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are substantially less pronounced in an ego-free control experiment. Updating does retain enough

of the structure of Bayes’ rule to let us model it coherently in an optimizing framework in which,
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1 Introduction

Since the 1960s cognitive psychologists have used simple laboratory experiments, such as ball-and-

urn problems, to show that people do not always process information as perfect Bayesians. For

example, participants may under- or over-react to signals depending on how informative they are

(Massey and Wu, 2005). Such results speak clearly to our cognitive limits.1 More recently, however,

a separate literature has raised the possibility that information processing may be further distorted

by motivated reasoning. In particular, a person’s beliefs about his own (positive) characteristics—

which we refer to as “ego”—may affect his utility independent of any effects they have on his actions.

This motive may in turn bias information processing, with consequences such as overconfidence in

one’s own abilities. Overconfidence is thought to have significant economic costs including excess

entrepreneurial entry, excess trading, firm overvaluation, and other anomalies in financial markets,

as well as excess investment in projects and overpayment for mergers by CEO’s.2

Motivated by these observations, a fast-growing literature in behavioral economics has explored

how exactly people might acquire or process information to “manage” their self-confidence, whether

consciously or subconsciously. Some models emphasize selective attention and recall (Rabin and

Schrag, 1999; Benabou and Tirole, 2002) while other approaches focus on selective interpretation of

information (Akerlof and Dickens, 1982; Brunnermeier and Parker, 2005). Different mechanisms in

turn imply different policies for providing feedback. For example, people who tend to “forget” neg-

ative feedback might benefit from policies that make it more salient. People who tend to downplay

the informativeness of negative feedback, on the other hand, might benefit more from relatively

precise, unambiguous feedback. Quarterly performance reviews in companies, for example, might

benefit them less than infrequent but more dispositive evaluations.3

Identifying the mechanics of self-confidence management requires data on how beliefs evolve over

time, and in response to feedback. Cross-sectional data, such as the oft-cited finding that 88% of US

drivers rated themselves safer than the median driver (Svenson, 1981), certainly strongly suggest

that people are more confident than a Bayesian exposed to the same information would be.4 But

their diagnostic power for identifying how people manage their self-confidence is quite limited. For

example, Zábojńık (2004) and Benoit and Dubra (2011) have shown that purely Bayesian updating

can in fact generate highly skewed belief distributions that seem “over-confident.”5

1See Fischhoff and Beyth-Marom (1983) for a review of early work and Benjamin (2019) for a recent review.
2See Camerer and Lovallo (1999) and references therein, Odean (1998), Barber and Odean (2001), Daniel et al.

(1998), Malmendier and Tate (2005), and Adebambo and Yan (2016). A smaller literature points out that individual
overconfidence may nevertheless have aggregate benefits (e.g. Galasso and Simcoe, 2011; Li et al., 2017). Note that
in the finance literature the term “overconfidence” is typically used to describe an agent who is too confident in the
precision of her beliefs about the returns on an asset De Long et al. (1991); we view this as consistent with our notion
of overconfidence in one’s abilities, in the sense that a forecaster who over-rates their own forecasting abilities will
have too little subjective uncertainty about the future as a result.

3US firms have recently been shifting from annual to quarterly performance reviews (Church et al., 2012).
4Svenson (1981), Englmaier (2006) and Benoit and Dubra (2011) review evidence on overconfidence.
5Other interpretations that are consistent with Bayesian updating have also been proposed: people might disagree

on the definition of “high ability” (Santos-Pinto and Sobel, 2005) or tend to (rationally) choose activities for which
they over-rate their abilities (Van den Steen, 2004). Burks et al. (2013) address this criticism by studying the joint
distribution of beliefs and actual ability, but do not directly measure updating. In a related vein, Van den Steen (2011)

2



The first aim of this paper is to address these concerns by measuring belief updating in a con-

trolled experimental environment in which we can identify specific departures from Bayes’ rule and

assess to what extent these departures are motivated as opposed to purely cognitive imperfections.

Specifically, we measure the evolution of participants’ beliefs about their relative performance on

an IQ test. We focus on IQ because it affects labor market success across many occupations and

we expect participants to have strong ego motives for feeling “smart”. We track participants’ be-

liefs about a binary event—scoring in the top half of performers—which lets us summarize their

beliefs in a single number, the subjective probability of this event. This in turn lets us elicit beliefs

incentive-compatibly using a probabilistic crossover method: we elicit the value of x for which par-

ticipants are indifferent between receiving a prize with probability x and receiving the prize if their

score is among the top half.6 To minimize participant confusion in the instructions we both alert

them that truth-telling is payoff maximizing and also explain the mechanism using narrative story-

telling vignettes, alleviating some of the instruction comprehension concerns recently discussed in

Danz et al. (2020). We elicit beliefs after the quiz and then repeatedly after providing participants

with informative but noisy feedback in the form of signals indicating whether they scored in the

top half, which are correct with 75% probability. We then compare belief updates in response to

these signals to the Bayesian benchmark to identify which of its properties hold.

We first document three basic properties of Bayes’ rule that hold fairly well in our data. First,

belief revisions are invariant in the sense that the change in beliefs depends only on the information

received. One corollary is that we do not find evidence of confirmatory bias, in the sense of par-

ticipants over-weighting information that confirms their prior views.7 Second, priors are sufficient

statistics for past signals with respect to their posteriors, fully summarizing what participants have

learned. Third, updating parameters are for the most part stable across rounds of feedback, with

no obvious trend. At least in an aggregate sense, then, our data are consistent with some of the

basic structural features of Bayes rule.

At the same time, we find that participants do exhibit two substantial biases when incorporating

new information into their beliefs. First, they are asymmetric, revising their beliefs by 15% more on

average in response to positive feedback than to negative feedback. This pattern is consistent across

rounds and significant in our preferred specification that pools data across rounds (p < 0.001%),

though we are not powered to detect it in all rounds individually. Strikingly, participants who

received two positive and two negative signals — and thus learned nothing — ended up significantly

shows how Bayesian-rational agents with differing priors may become overconfident in the sense of over-estimating
the precision of their estimates.

6Unlike the quadratic scoring rule, this mechanism is robust to risk aversion (and even to non-standard preferences
provided participants prefer a higher chance of winning a fixed prize). Allen (1987) and Grether (1992) were among
the first, to our knowledge, to discuss this mechanism, but at the time we conducted our experiment it was still
fairly novel. In the decade after we conducted our study it has become fairly standard in work on motivated
reasoning (see Benjamin, 2019). Experimental economists have widely adopted incentive compatible belief elicitation
mechanisms more generally, with much work done exploring both the theoretical properties of these mechanisms and
comprehension of underlying incentives by the participants in experiments. See Hossain and Okui (2013), Holt and
Smith (2016), and Wilson and Vespa (2017), among others.

7See Rabin and Schrag (1999) for a review of work on this topic.
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more confident than they began (p < 0.001%). It seems hard to argue that asymmetric updating

is the result of a cognitive error rather than a motivated bias in belief formation.

Second, participants are conservative, revising their beliefs by only 35% as much on average as

unbiased Bayesians with the same priors would. While this could be a motivated bias, conservatism

has not previously been linked to self-confidence management.8 Alternatively, this result could

be a simple cognitive error: participants might misunderstand probabilities and treat a “75%

correct” signal as less informative than it is. We conduct two tests to distinguish between these

two hypotheses about conservatism. First, we show that agents who score well on our IQ quiz—and

hence are arguably cognitively more able—are as conservative (and asymmetric) as those who score

poorly. Second, we conduct a control experiment, structurally identical to our initial experiment

except that participants report beliefs about the performance of a “robot” rather than their own

performance. Belief updating in this second experiment is significantly and substantially closer to

unbiased Bayesian; in particular, participants are far less conservative. These results suggest that

conservatism is at least partly a motivated phenomenon, and that conservatism and asymmetry

may be interrelated techniques for managing self-confidence.

Our second aim in the paper is to examine whether the biased beliefs produced by updating

processes like this actually matter for subsequent economic decision-making. This is a maintained

assumption in the new behavioral literature, which typically models agents who decide whether

to compete, invest, etc. by maximizing their expected utility, taking expectations with respect

to their biased beliefs. One might wonder, however, whether agents capable of enough “cognitive

dissonance” to bias their beliefs initially might also be capable of avoiding such mistakes. They

might, for example, maintain one set of beliefs for “consumption” and another for decision-making.

To the best of our knowledge there has been no evidence to date on this central issue.

To examine the consequences of biased updating we conduct a second experiment, building

on the first. We invite participants to a follow-up in which they perform a real-effort task and

must choose between two payment schemes: a piece-rate, and a competitive tournament in which

only the highest-performing worker is paid (as in Niederle and Vesterlund, 2007). We again use

crossover techniques to measure participants’ belief that they will win the tournament, conditional

on entering. We show that confidence is correlated with competitive behavior, confirming results in

previous studies, and then go further to show they have a causal effect. To establish causality we

exploit our experiment’s two-stage structure, using random variation in beliefs induced by feedback

in the first experiment to instrument for confidence in the follow-up experiment. We estimate that

the effect of confidence on competition is significant and roughly double the magnitude of the OLS

correlation. Most importantly, this causal effect of beliefs is stable across more and less conservative

8As alluded to above, psychologists tested Bayes’ rule for ego-independent problems during the 1960s; conservatism
was a common finding. See Slovic and Lichtenstein (1971), Fischhoff and Beyth-Marom (1983), and Rabin (1998)
for reviews. See also Grether (1980), Grether (1992) and El-Gamal and Grether (1995) testing whether agents use
the “representativeness heuristic” proposed by Kahneman and Tversky (1973). Charness and Levin (2005) test for
reinforcement learning and the role of affect using revealed preference data to draw inferences about how participants
update. Rabin and Schrag (1999) and Rabin (2002) study the theoretical implications of specific cognitive forecasting
and updating biases.
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updaters: participants whose beliefs are less responsive to information do not “undo” this bias by

making their actions more sensitive to beliefs. More conservative updaters are also less accurate

when assessing whether or not they would win a competition. All told, the data suggest that beliefs

do affect behavior and that participants who form biased beliefs do not “undo” these biases when

choosing their behavior.

Our third aim in the paper is to examine whether the main empirical results—asymmetric and

conservative updating of beliefs which in turn influence economic behavior—can be rationalized

within a coherent theoretical framework. To this end we build a model of optimal self-confidence

management. We discipline the exercise by requiring the agent to process information using rules

that match the three properties of Bayes’ rule—invariance, sufficiency, and stability—that hold in

our (aggregate) data. We call an agent that satisfies these three properties a biased Bayesian, as

her updating rule satisfies some properties of Bayes’ rule but can also accommodate asymmetric or

conservative updating.

We study an agent learning about her own ability while balancing rewards of two types: in-

strumental utility from making an investment decision that pays off only if her type is high, and

direct belief utility from thinking she is a high type, i.e. from her ego. This belief utility can also

be interpreted as a reduced-form representation of any number of instrumental reasons for valu-

ing self-confidence. The tension between instrumental and belief utility gives rise to an intuitive

first-best: if the agent is of high ability then she would like to learn her type, while if she is a

low type she would like to maintain an intermediate belief which trades off ego against accurate

decision-making. For example, a mediocre driver might want to think of herself as likely to be a

great driver, but not so likely that she drops her car insurance. We then derive the optimal up-

dating bias of an agent who does not know her type and show that it can essentially replicate the

agent’s first best. Interestingly, the optimal solution requires both asymmetry and conservatism as

natural complementary biases. The intuition is as follows: asymmetry increases the agent’s mean

belief in her ability in the low state of the world but also increases the variance of the low-type’s

beliefs, and thus the likelihood of costly investment mistakes. By also updating conservatively the

agent can reduce the variance of her belief distribution in the low state of the world.

Our paper contributes in a number of ways to work on motivated reasoning. First, it provides

experimental support for two core tenets of behavioral theory on the topic: that people hold pos-

itively biased beliefs about their own abilities, and that these beliefs causally affect subsequent

decisions. These ideas are common to a wide class of models that examine different motives for ele-

vating one’s self-confidence: to simply feel good about oneself (Akerlof and Dickens, 1982; Kőszegi,

2006), to derive higher anticipatory utility by believing the future will be bright (Caplin and Leahy,

2001; Brunnermeier and Parker, 2005), to compensate for limited self-control (Brocas and Carrillo,

2000; Carrillo and Mariotti, 2000; Benabou and Tirole, 2002), or to directly enhance performance

(Compte and Postlewaite, 2004).

Second, it provides support specifically to theories in which the mechanism by which agents

manage their self-confidence is through manipulating their beliefs (Akerlof and Dickens, 1982;
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Mayraz, 2019) or their interpretations of signals Brunnermeier and Parker (2005).9 We also find

some evidence for a second mechanism, selective acquisition of information, as for example in

Carrillo and Mariotti (2000) and Kőszegi (2006); for brevity we discuss these results in Appendix

S-2. Our experiment does not speak as directly to a third mechanism, imperfect memory, as it was

intentionally designed to minimize forgetfulness (compressing updating into a short time period

and reminding participants of the full history of signals at each update).10

Third, it contributes to work on “attribution bias,” or the tendency to take credit for good

outcomes and deny blame for bad ones. One can interpret asymmetric updating in our experiment

as an example: participants appear more likely to attribute positive signals to performance and

negative signals to noise. This example is not subject to the critique of many earlier studies in

social psychology that they “seem readily interpreted in information-processing terms” (Miller and

Ross, 1975, p. 224) either because the data-generating processes were not clearly defined,11 or

because key outcome variables were not objectively defined or elicited incentive-compatibly.12 We

address these critiques by examining the evolution of beliefs about a well-defined probabilistic event

in response to signals from a clearly specified data-generating process.

Since our results were first released (Mobius et al., 2011) experimental work on belief updating

has blossomed, with a number of studies employing (and extending) our and similar designs. Among

experimental studies of ego-related beliefs, most of them find support for conservatism while the

evidence on asymmetric updating is more mixed.13 The most closely related work is by Buser

et al. (2018) who replicate both our feedback design and the follow-up entry-into-competition

experiment. They provide 18 instead of 4 rounds of feedback which allows them to estimate each

individual participant’s conservatism and asymmetry precisely. There is substantial heterogeneity

in both of these traits and conservatism predicts entry into competition. In an intriguing recent

paper, Drobner (forthcoming) shows that asymmetry is observed only when subjects do not expect

that uncertainty about their performance will be resolved immediately. This is commonly the case

in psychology experiments (where there is very strong evidence for asymmetry) but less common

9The concept of a single, monolithic “belief” is itself questioned in work on ambiguity aversion, in which agents hold
multiple priors and use the most pessimistic to assess any given situation (Gilboa and Schmeidler, 1989). Generally
speaking, such models can generate updating patterns inconsistent with Bayes’ rule. Because we study a binary
event, however, Bayes rule should be satisfied in our data even if participants are ambiguity averse, in the sense that
the most pessimistic among a family of priors should yield the most pessimistic among the resulting posteriors.

10See Mullainathan (2002), Benabou and Tirole (2002), Wilson (2003), and Gennaioli and Shleifer (2010) for
examples of models of imperfect memory.

11See Wetzel (1982). For example, in a typical experimental paradigm, participants would teach a student and
then attribute the student’s subsequent performance either to their teaching or to other factors. A common finding
is that participants attribute poor performances to lack of student effort, while taking credit for good performances.
This is consistent with the fixed beliefs that (a) student effort and teacher ability are complementary and (b) the
teacher is capable.

12For example, Wolosin et al. (1973) had participants place 100 metal washers on three wooden dowels according to
the degree to which they felt that they, their partner, and the situation were “responsible” for the outcome. Santos-
Pinto and Sobel (2005) show that if agents disagree over the interpretation of concepts like “responsibility,” this can
generate positive self-image on average, and conclude that “there is a parsimonious way to organize the findings that
does not depend on assuming that individuals process information irrationally...” (p. 1387).

13See Eil and Rao (2011), Grossman and Owens (2012), Charness et al. (2018),Buser et al. (2018) and Coutts
(2019), as well as the discussion in Benjamin (2019).
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or ambiguous in economic experiments where subjects can often find out how well they did.14

Recent work has also extended the analysis in new directions. Several studies examine belief up-

dating about some financial asset in which the participant has a stake (as opposed to own ability)

and find systematic deviations from Bayes’ rule (though not asymmetric updating) in that do-

main (Ertac, 2011; Gotthard-Real, 2017; Barron, 2021). Turning to the benefits of self-confidence,

Schwardmann and van der Weele (2019) document causal effects on payoffs in a persuasion setting

using an identification strategy like the one we use here to study competitive behavior. Finally,

Oprea and Yuksel (2021) and Kogan et al. (2021) extend the analysis into social domains, demon-

strating asymmetric updating about collective outcomes. Oprea and Yuksel (2021) in particular

show that subjects update asymmetrically in response to learning each other’s beliefs, thus demon-

strating the role of self-confidence management in social learning processes.

2 Experimental Design and Methodology

2.1 Quiz Stage

During the quiz stage, each participant had four minutes to answer as many questions as possible

out of 30. We randomly assigned each participant to one of 9 different versions of the IQ test,

and informed participants that quiz types varied and that their performance would be compared

against that of students taking the same version. Tests consisted of standard logic and vocabulary

questions such as:

Question: Which one of the five choices makes the best comparison? LIVED is to

DEVIL as 6323 is to (i) 2336, (ii) 6232, (iii) 3236, (iv) 3326, or (v) 6332.

Question: A fallacious argument is (i) disturbing, (ii) valid, (iii) false, or (iv) neces-

sary?

A participant’s final score was the number of correct answers minus the number of incorrect an-

swers.15 Earnings for the quiz were the score multiplied by $0.25. During the same period an

unrelated experiment on social learning was conducted and the combined earnings of all parts of all

experiments were transferred to participants’ university debit cards at the end of the study. Since

earnings were variable and not itemized (and even differed across IQ tests), it would have been

very difficult for participants to infer their relative performance from earnings.16

Types. We focus on participants’ learning about whether or not they scored above the median

for their particular IQ quiz. Because these “types” are binary, a participant’s belief about her type

14Incidentally, it was difficult for subjects to infer their performance in our experiment because we paid them
jointly for different parts of the study. This might be one of the reasons why our subjects displayed relatively strong
asymmetry in updating.

15Quiz questions cover a range of cognitive skills as defined in Cattell-Horn-Carroll theory and in the Woodcock-
Johnson test. For example, the pattern recognition question above tests for fluid intelligence (Gf).

16Subjects total expected earnings from this experiment, given their responses and summing over the quiz stage
as well as the feedback and information purchasing stages (described below), had a mean of $3.94 with standard
deviation $1.88.
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at any point in time is given by a single number, her subjective probability of being a high type.

This will prove crucial when devising incentives to elicit beliefs, and distinguishes our work from

approaches that elicit only several moments of more complicated belief distributions.17

2.2 Feedback Stage

During the feedback stage we repeated the following protocol four times. First, each participant

received a binary signal that indicated whether the participant was among the top half of performers

and was correct with 75% probability. We then measured each participant’s belief about being

among the top half of performers.

Signal Accuracy. Signals were independent and correct with probability 75%: if a participant

was among the top half of performers, she would get a “Top” signal with probability 0.75 and a

“Bottom” signal with probability 0.25. If a participant was among the bottom half of performers,

she would get a Top signal with probability 0.25 and a Bottom signal with probability 0.75. Because

the experiment was conducted over the web, we provided a narrative to help participants understand

the accuracy of signals. Participants were told that the report on their performance would be

retrieved by one of two “robots” — “Wise Bob” or “Joke Bob.” Each was equally likely to be

chosen. Wise Bob would correctly report Top or Bottom. Joke Bob would return a random report

using Top or Bottom with equal probability. We explained that this implied that the resulting

report would be correct with 75% probability.

Belief elicitation. To elicit beliefs we use a crossover mechanism. Participants were presented

with two options,

1. Receive $3 if their score was among the top half of scores (for their quiz version).

2. Receive $3 with probability x ∈ {0, 0.01, 0.02, ..., 0.99, 1}.

and asked for what value of x they would be indifferent between them. We then draw a random

number y ∈ {0, 0.01, 0.02, ..., 0.99, 1} and pay participants $3 with probability y when y > x and

otherwise pay them $3 if their own score was among the top half. We also told participants that

we would elicit beliefs several times but would implement only one choice at random for payment.

When we conducted our experiment (April 2005) it was one of the first to use this type of random

binary choice mechanism (Healy, 2018).18

To explain this mechanism to participants we use a simple but innovative narrative form. We

told participants that they were paired with a “robot” who had a fixed but unknown probability

y between 0 and 100% of scoring among the top half of participants. Participants could base their

chance of winning $3 on either their own performance or their robot’s, and had to indicate the

threshold level of x above which they preferred to use the robot’s performance. We explained

17For example, Niederle and Vesterlund (2007) elicit the mode of beliefs about rank in groups of 4.
18Our mechanism is equivalent to Grether’s (1992) BDM probability pricing procedure. It has also been indepen-

dently proposed by Karni (2009) and Holt (1986). Hoelzl and Rustichini (2005) use a related probabilistic mechanism
to elicit an indicator for whether participants’ beliefs in an event were above or below 1/2.
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that participants would maximize their probability of earning $3 by choosing their own subjective

probability of being in the top half as the threshold. Using this narrative device, we thus framed

their choice similar to a multiple price list (MPL) which made it easier to explain the procedure to

participants in an online experiment.19

The crossover mechanism has two main advantages over the quadratic scoring rule for our

purposes. First, quadratic scoring is truth-inducing only for risk-neutral participants, while the

crossover mechanism is strictly incentive-compatible provided only that participants’ preferences are

monotone in the sense that among lotteries that pay $3 with probability q and $0 with probability

1−q, they strictly prefer those with higher q.20 This property holds for von-Neumann-Morgenstern

preferences as well as for many non-standard models such as Prospect Theory. Second, the crossover

mechanism does not generate perverse incentives to hedge quiz performance. Consider a participant

who has predicted she will score in the top half with probability µ̂. Let S denote her score and

F her subjective beliefs about the median score S. Under quadratic scoring she will earn a piece

rate of $0.25 per point she scores and lose an amount proportional to (IS≥S − µ̂)2, so her expected

payoff as a function of S is

$0.25 · S − k ·
∫
S

(IS≥S − µ̂)2dF (S) (1)

for some k > 0. For low values of µ̂ this may be decreasing in S, generating incentives to “hedge.”

In contrast, her expected payoff under the crossover mechanism is

$0.25 · S + $3.00 · µ̂ ·
∫
S
IS≥SdF (S), (2)

which unambiguously increases with S. Intuitively, conditional on her own performance being the

relevant one (which happens with probability µ̂), she always wants to do the best she can.

2.3 Information Purchasing Stage

In the information purchasing stage participants had an opportunity to purchase information about

their performance. Participants stated their willingness to pay for receiving $2 as well as for

receiving $2 and an email containing information on their performance. We bounded responses

between $0.00 and $4.00. We offered two kinds of information: participants could learn whether they

scored in the top half, or learn their exact quantile in the score distribution. For each participant

one of these choices was randomly selected and the participant purchased the corresponding bundle

if and only if their reservation price exceeded a randomly generated price. This design is a standard

19Holt and Smith (2016) demonstrate that “random binary choice” (RBC) methods outperform the quadratic
scoring rule in the lab. Hossain and Okui (2013) introduce binarized scoring rules, a generalization of RBC methods for
general probability distributions. However, there are concerns that this generality comes at the cost of comprehension
(Wilson and Vespa, 2017; Danz et al., 2020; Healy and Kagel, 2021).

20See Offerman et al. (2009) for an overview of the risk problem for scoring rules and a proposed risk-correction.
One can of course eliminate distortions entirely by not paying participants, but unpaid participants tend to report
inaccurate and incoherent beliefs (Grether, 1992).
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application of the Becker-DeGroot-Marschak mechanism except that we measure information values

by netting out participants’ valuations for $2 alone from their other valuations to address the

concern that participants may under-bid for objective-value prizes.21 For the sake of brevity we

describe results from this stage in Appendix S-2.

2.4 Follow-up Stage

We invited a random subsample of participants by email one month later for a follow-up which

repeated the feedback stage but with reference to the performance of a robot, rather than the

participant’s own performance. participants were told they had been paired with a robot who had

a probability θ of being a high type. We then gave participants repeated binary signals of the

robot’s ability and tracked their beliefs about the robot, just as in the main experiment. To make

this comparison as effective as possible we matched experimental conditions in the follow-up as

closely as possible to those in the baseline. We set the robot’s initial probability of being a high

type, θ, to the multiple of 5% closest to the participant’s post-IQ quiz confidence. For example, if

the participant had reported a confidence level of 63% after the quiz we would pair the participant

with a robot that was a high type with probability θ = 65%. We then randomly picked a high

or low type robot for each participant with probability θ. If the type of the robot matched the

participant’s type in the earlier experiment then we generated the same sequence of signals for the

robot. If the types were different, we chose a new sequence of signals. In either case, signals were

correctly distributed conditional on the robot’s type.

2.5 Competition Stage

Finally, we invited a second random subsample of participants by email one month after the feedback

stage to a competition stage based on Niederle and Vesterlund (2007). The purpose of this stage

was to analyze the link between self-confidence and willingness to compete in a real effort task. We

chose a widely used tournament design in order to proxy for labor market competitions in which

self-confidence is important, such as applying for a competitive degree program or selecting into an

ambitious career path.

Each participant performed a “character game” multiple times. Each character game consisted

of a sequence of character matrices displayed two at a time on screen. Each pair of matrices was

identical except for two characters, and the participant’s task was to identify the two mismatched

characters. Participants could not move on to the next screen without correctly identifying the mis-

matched characters, and were given three minutes to solve as many puzzles as possible. Participants

were given three practice problems before playing for stakes.

Each of the character games was played under distinct incentive conditions, and participants

were told that the results from exactly one would be chosen at random and implemented. In the

first game all participants were paid on a tournament basis: they were randomly assigned to a

21In our data, for example, we find that 89% of participants bid less than $2 for $2. See Appendix S-2.
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Figure 1: Sample character game

V B A I M V
H Y K C M F

Z C M E Y C

W X G S X M

C F D K V T

Q I A Z D Z

I U V A G C

V B A I M V
H Y K H M F

Z C M E Y C

W X G S X M

C F D K V T

Q I A Z M Z

I U V A G C
 Timed Practice 1

group of four participants and paid 100 cents per problem solved if they solved the most problems

within this group, and nothing otherwise. Before the second game participants were offered a

choice: a piece rate of 25 cents per problem solved, or a tournament rate of 100 cents per problem

solved if and only if their performance was better than that of the three peers from the first game.

Participants did not know at this juncture whether they had won the first game. Regardless of

their choice, we also separately and subsequently asked each participant what they thought the

probability was that they would win such a tournament, i.e. that their score in the second game

was higher than that of the others in their group in the first game. We elicited this subjective

probability using the same crossover mechanism as above.

3 Data

3.1 Participant Pool

The experiment was conducted in April 2005 as part of a larger sequence of experiments at a large

private university with an undergraduate student body of around 6,400. A total of 2,356 students

signed up in November 2004 to participate in this series of experiments by clicking a link on their

homepage on www.facebook.com.22 These students were invited by email to participate in the

belief updating study, and 1,058 of them accepted the invitation and completed the experiment

online. The resulting sample is 45% male and distributed across academic years as follows: 26%

seniors, 28% juniors, 30% sophomores, and 17% freshmen. Our sample includes about 33% of all

sophomores, juniors, and seniors enrolled during the 2004–2005 academic year, and is thus likely

to be unusually representative of the student body as a whole.

As with any online experiment it is important to consider how well participants understood and

followed instructions. Anticipating this issue, our software required participants to make an active

choice each time they submitted a belief and allowed them to report beliefs clearly inconsistent

with Bayesian updating, such as updates in the wrong direction or simply not updating. After

22In November 2004 more than 90% of students were members of the site and at least 60% of members logged into
the site daily.
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Figure 2: Belief Distributions
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Empirical CDFs of participants’ beliefs after the quiz (Post Quiz) and after four rounds of feedback (Post Signal 4).

each of the 4 signals, a stable proportion of about 36% of participants reported the same belief as

in the previous round.23 About 16% of participants did not change their beliefs at all during all

four rounds of the feedback stage. In contrast, the share of participants who updated in the wrong

direction declined over time (13%, 9%, 8% and 7%), and most participants made at most one such

mistake.24 Our preferred estimates use the restricted sample of participants who made no updates

in the wrong direction and revised their beliefs at least once. These restrictions exclude 25% and

13% of our sample, respectively, and leave us with 342 women and 314 men. While they potentially

bias us against rejecting Bayes’ rule, and in particular against finding evidence of conservatism,

we implement them to ensure that our results are not driven by participants who misunderstood

or ignored the instructions. Our main conclusions hold on the full sample as well and we provide

those estimates as robustness checks where appropriate.

To preview overall updating patterns, Figure 2 plots the empirical cumulative distribution

function of participants’ beliefs both directly after the quiz and after four rounds of updating.

Updating yields a flatter distribution as mass shifts towards 0 (for low types) and 1 (for high

types). Note that the distribution of beliefs is reasonably smooth, with limited bunching around

focal numbers.25

23The exact proportions were 36%, 39%, 37% and 36% for the four rounds, respectively. Wiswall and Zafar (2014)
report similar rates in a feedback experiment where 24% of participants do not update their beliefs about future
earnings after being shown the earnings distribution of the corresponding population.

24Overall, 19% of participants made only one mistake, 6% made two mistake, 2% made 3 mistakes and 0.4% made
4 mistakes.

25Hollard et al. (2016) use this as an approximate metric of participant attentiveness to the decision problem at
hand. They compare beliefs elicited using several different procedures and find that the crossover procedure yields
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We invited 120 participants to the follow-up stage, of whom 78 participated. The pattern of

wrong and neutral moves was similar to the first stage of the experiment. Slightly fewer participants

made neutral updates (28% of all updates) and 10% always made neutral updates. Slightly more

participants made wrong updates (22% made one mistake, 10% made two mistakes, 5% made three

mistakes and 3% made 4 mistakes). The restricted sample for the follow-up has 40 participants.

We invited 274 participants to the competition stage, of whom 146 participated.

3.2 Quiz Scores

The mean score of the 656 participants was 7.4 (s.d. 4.8), generated by 10.2 (s.d. 4.3) correct

answers and 2.7 (s.d. 2.1) incorrect answers. The distribution of quiz scores (number of correct

answers minus number of incorrect answers) is approximately normal, with a handful of outliers

who appear to have guessed randomly. The most questions answered by a participant was 29,

so the 30-question limit did not induce bunching at the top of the distribution. Table S-4 in the

supplementary appendix provides further descriptive statistics broken down by gender and by quiz

type. The 9 versions of the quiz varied substantially in difficulty, with mean scores on the easiest

version (#6) fives time higher than on the hardest version (#5). Participants who were randomly

assigned to harder quiz versions were significantly less confident that they had scored in the top

half after taking the quiz, presumably because they attributed some of their difficulty in solving the

quiz to being a low type.26 We exploit this variation in our data analysis, using quiz assignment

as an instrument for beliefs.

4 Information Processing

We now compare empirical belief updating to the Bayesian benchmark. On casual observation they

differ starkly: the correlation of participants’ logit-beliefs with those predicted by Bayes’ rule is

0.57, significantly different from unity. To unpack this result and identify exactly which properties

of Bayes’ rule fail, we next specify empirical models that nest it.

Denote by µ̂t the agent’s subjective belief after receiving the tth signal, st. Considering an

arbitrary updating process, we say that it is invariant if it can be written as

f(µ̂t)− f(µ̂t−1) = gt(st, st−1, . . .) (3)

for some sequence of functions gt that do not depend on µ̂t−1. In particular, invariance excludes

confirmatory bias where the responsiveness to positive feedback increases with the prior (Rabin

and Schrag, 1999). We say that the prior µ̂t−1 is a sufficient statistic for information received prior

to t if we can write gt(st, st−1, . . .) = gt(st). Finally, this relationship is stable across time if gt = g

for all t. Together these three properties greatly reduce the potential complexity of information

the smoothest distributions.
26Moore and Healy (2008) document a similar pattern.
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processing. Bayes’ rule satisfies them, as it can be written (in the binary signals case) as

logit(µ̂t) = logit(µ̂t−1) + I(st = H)λH + I(st = L)λL (4)

where I(st = H) is an indicator for whether the tth signal was “High”, λH is the log likelihood ratio

of a high signal, and so on. (In our experiment λH = −λL = ln(3).) Our main empirical model

nests this Bayesian benchmark:

logit(µ̂it) = δlogit(µ̂i,t−1) + βHI(sit = H)λH + βLI(sit = L)λL + εit (5)

The coefficient δ equals 1 if the invariance property holds, while the coefficients βH and βL capture

responsiveness to positive and negative information, respectively. The error term εit captures

unsystematic errors. Note that we do not include a constant term since I(sit = H)+I(sit = L) = 1.

To test stability we estimate (5) separately for each of our four rounds of updating and test whether

our coefficient estimates vary across rounds. To test whether priors are sufficient statistics we

augment the model with indicators I(si,t−τ = H) for lagged signals:

logit(µ̂it) = δlogit(µ̂i,t−1) + βHI(sit = H)λH + βLI(sit = L)λL

+
t−1∑
τ=1

βt−τ [I(si,t−τ = H)λH + I(si,t−τ = L)λL] + εit (6)

Sufficiency predicts that the lagged coefficients βt−τ are zero.

Identifying (5) and (6) is non-trivial because they include lagged logit-beliefs (that is, priors)

as a dependent variable. If there is unobserved heterogeneity in participants’ responsiveness to

information, βL and βH , then OLS estimation may yield upwardly biased estimates of δ due to

correlation between the lagged logit-beliefs and the unobserved components βiL−βL and βiH −βH
in the error term. Removing individual-level heterogeneity through first-differencing or fixed-effects

estimation does not solve this problem but rather introduces a negative bias (Nickell, 1981). In

addition to these issues, there may be measurement error in self-reported logit-beliefs because

participants make mistakes or are imprecise in recording their beliefs.27

To address these issues we exploit the fact that participants’ random assignment to different

versions of the IQ quiz generated substantial variation in their post-quiz beliefs. This allows us to

construct instruments for lagged prior logit-beliefs. For each participant i we calculate the average

quiz score of participants other than i who took the same quiz variant to obtain a measure of the

quiz difficulty level that is not correlated with participant i’s own ability but highly correlated with

the participant’s beliefs.

27See Arellano and Honore (2001) for an overview of the issues raised in this paragraph. Instrumental variables
techniques have been proposed that use lagged difference as instruments for contemporaneous ones (see, for example,
Arellano and Bond (1991)); these instruments would be attractive here since the theory clearly implies that the first
lag of beliefs should be a sufficient statistic for the entire preceding sequence of beliefs, but unfortunately higher-order
lags have little predictive power when the autocorrelation coefficient δ is close to one, as Bayes’ rule predicts.
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4.1 Invariance, Sufficiency and Stability

Table 1 presents round-by-round and pooled estimates of Equation 5.28 Estimates in Panel A

are via OLS and those in Panel B are via IV using quiz type indicators as instruments. The

F -statistics reported in Panel B indicate that our instrument is strong enough to rule out weak

instrument concerns (Stock and Yogo, 2005).

Result 1 (Invariance). Participants’ updating behavior is invariant to their prior.

Invariance implies that the change in (logit) beliefs should not depend on the prior, or equiva-

lently, that the responsiveness to positive and negative information is not a function of the prior.

This implies a coefficient δ = 1 on prior logit-beliefs in Equation 5. The OLS estimate is close

to but significantly less than unity; although it climbs by round, we fail to reject equality with

one only in Round 4 (p = 0.57). These estimates may be biased upward by heterogeneity in the

responsiveness coefficients, βiL and βiH , or may be biased downwards if participants report beliefs

with noise. The IV estimates suggest that the latter bias is more important: the pooled point

estimate of 0.963 is larger and none of the estimates are significantly different from unity.

Of course, it is possible that both βH and βL are functions of prior logit-beliefs but that the

effects cancel out to give an average estimate of δ = 1. To address this possibility, Table S-7 reports

estimates of an augmented version of Equation 5 that includes an interaction between the (logit)

prior and the high signal I(sit = H). Invariance requires that the coefficient δH on this interaction

is zero; our estimated δH varies in sign across rounds and is significant at the 5% level only once,

in the OLS estimate for Round 1. It is small and insignificant in our pooled estimates using both

OLS and by IV, and the same holds when we use our full sample. All told, updating appears

invariant at least in the aggregate, though of course this may mask heterogeneity from participant

to participant. We note that invariance implies that our participants are not prone to confirmatory

bias, in the sense that they tend to place more weight on information that is consistent with their

priors.

Result 2 (Sufficiency). Controlling for prior beliefs, lagged information does not significantly pre-

dict posterior beliefs.

Priors appear to be fully incorporated into posteriors—but do they fully capture what partic-

ipants have learned in the past? Table 2 reports instrumental variables estimates of Equation 6,

which includes lagged signals as predictors. We can include one lag in round 2, two lags in round

3, and three lags in round 4. None of the estimated coefficients are statistically or economically

significant, supporting the hypothesis that at least in the aggregate priors properly encode past

information. We also obtain the same result using the full sample (Table S-5).

Result 3 (Stability). The structure of updating is largely stable across rounds.

28The logit function is defined only for priors and posteriors in (0, 1); to balance the panel we further restrict the
sample to participants i for whom this holds for all rounds t. Results using the unbalanced panel, which includes
another 101 participant-round observations, are essentially identical.
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Table 2: Priors are Sufficient Statistics for Lagged Information

Regressor Round 2 Round 3 Round 4

δ 0.872 1.124 0.892
(0.097)∗∗∗ (0.155)∗∗∗ (0.149)∗∗∗

βH 0.284 0.348 0.398
(0.023)∗∗∗ (0.030)∗∗∗ (0.041)∗∗∗

βL 0.284 0.272 0.343
(0.027)∗∗∗ (0.031)∗∗∗ (0.028)∗∗∗

β−1 0.028 -0.027 0.045
(0.035) (0.050) (0.050)

β−2 -0.036 0.067
(0.052) (0.054)

β−3 0.057
(0.057)

N 612 612 612
R2 - - -

Each column is a regression. The outcome in all regressions is the log posterior odds ratio. Reported coefficients are on

the log prior odds ratio (δ), the log likelihood ratio for positive and negative signals (βH and βL), and the log likelihood

ratio of the signal received τ periods earlier (β−τ ). The estimation sample includes participants whose beliefs were

always within (0, 1) and who updated their beliefs at least once and never in the wrong direction. Estimation is via

IV using the average score of other participants who took the same (randomly assigned) quiz as an instrument for

the log prior odds ratio. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted

as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

We test for stability by comparing the coefficients δ, βH , and βL across rounds. Our (preferred)

IV estimates in Table 1 show some variation, but without any obvious trend. Wald tests for

heterogeneous coefficients are mixed; we reject the null of equality for βH (p < 0.01) but not for

βL (p = 0.24) or for δ (p = 0.52).29 Given the lack of any clear trends we view the test result for

βH as suggestive, and potentially worth further investigation in a longer panel.

4.2 Conservatism and Asymmetry

Result 4 (Conservatism). Participants respond less to both positive and negative information than

an unbiased Bayesian.

The OLS estimates of βH and βL reported in Table 1, 0.370 and 0.302, are substantially and

significantly less than unity. Round-by-round estimates do not follow any obvious trend. The IV

and OLS estimates are similar, suggesting there is limited bias in the latter through correlation

with lagged prior beliefs. To ensure that this result is not an artifact of functional form, Figure

3 presents a complementary non-parametric analysis of conservatism. The figure plots the mean

belief revision in response to a Top and Bottom signal by decile of prior belief in being a top half

29We obtain similar results using our full sample, rejecting the null of equality for βH (p < 0.01) but not (quite)
for βL (p = 0.10) or for δ (p = 0.90).
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Figure 3: Conservatism
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type for each of the four observations of the 656 participants, with the average Bayesian response

plotted alongside for comparison. Belief revisions are consistently smaller than those implied by

Bayes rule across essentially all of these categories.

Result 5 (Asymmetry). Controlling for prior beliefs, participants respond more to positive than to

negative signals.

Figure 4 examines this pattern non-parametrically; it compares participants whose prior belief

was µ̂ and who received positive feedback with participants whose prior belief was 1− µ̂ and who

received negative feedback. According to Bayes’ rule, the magnitude of the belief change in these

situations should be identical. Instead participants consistently respond more strongly to positive

feedback across deciles of the prior. As an alternative non-parametric test we can also examine

the net change in beliefs among the 224 participants who received two positive and two negative

signals. These participants should have ended with the same beliefs as they began; instead their

beliefs increased by an average of 4.8 percentage points (p < 0.001).

To quantify asymmetry we turn to our regression analysis, comparing estimates of βH and

βL, the responsiveness to positive and negative signals, from Table 1. The difference βH − βL is

consistently positive across all rounds and significantly different from zero in our preferred (and

best-powered) pooled specification. It is also significant in the first and fourth rounds individually,

though not the second and third, and we cannot reject the hypothesis that the estimates are equal
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Figure 4: Asymmetry
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across all four rounds (p = 0.32). The IV estimates are somewhat more variable but are again

uniformly positive, and significantly so in our preferred pooled specification. All told, while we are

not powered to detect it in some rounds of updating individually, we view this as strong cumulative

evidence of asymmetric updating.

The size of the difference is substantial, implying that the combined effect of receiving both a

positive and a negative signal (equivalent to getting no information) is positive and, in terms of

magnitude, approximately a quarter (26%) of the effect of receiving only a positive signal.30

Deviations from Bayes’ rule were costly within the context of the experiment. Comparing

expected payoffs given observed updating (πactual) to those participants would have earned if they

updated using Bayes’ rule (πBayes) or if they did not update at all (πnoupdate), we find that the

ratio
πBayes−πactual
πBayes−πnoupdate is 0.59. Non-Bayesian updating behavior thus costs participants 59% of the

potential gains from processing information within the experiment.

4.3 Is Conservatism a Cognitive Failing?

Before discussing our results, we first test for a potential confound in our interpretation of con-

servative updating. Unlike asymmetry, conservatism could potentially be a cognitive rather than

30Table S-6 in the supplementary appendix shows that the results of the regression continue to hold when we pool
all four rounds of observation, even when we eliminate all observations in which participants do not change their
beliefs. That is, the effect is not driven by an effect of simply not updating at all.
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Table 3: Heterogeneity in Updating by Ability

Regressor OLS

βH 0.426
(0.029)∗∗∗

βL 0.281
(0.014)∗∗∗

βAbleH -0.072
(0.033)∗∗

βAbleL 0.012
(0.025)

N 2448
R2 0.405

Each column is a separate regression. The outcome in all regressions is the log belief ratio. δ, βH , and βL are the

estimated effects of the prior belief and log likelihood ratio for positive and negative signals, respectively. δAble, βAbleH ,

and βAbleL are the differential responses attributable to high ability. Robust standard errors clustered by individual

reported in parentheses. Statistical significance is denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

motivated bias. Participants might misinterpret the informativeness of signals and treat them as

if they were correct with probability less than 75%. This would be understandable if participants

usually encountered weaker signals in daily life, for example.

We present two pieces of evidence that suggest that cognitive errors are not the driving factor.

First, we show that conservatism (and asymmetry) do not correlate with the cognitive ability of

participants. Specifically, we assess whether biases are present both among high performers (those

that score in the top half) and low performers on the IQ quiz. Table 3 reports estimates of Equation

5 differentiated by ability. We find no evidence that more able (higher performing) participants

update differently than less able participants: they do not differ in the way they weight their

priors or in the way they incorporate positive and negative signals. Of course, to the extent that

our intelligence measure does not perfectly capture information-processing ability this test is only

suggestive.

For a more definitive test distinguishing motivated behavior from cognitive errors we turn to

the results of the follow-up experiment, in which a random subset of participants performed an

updating task that was formally identical to the one in the original experiment, but which dealt

with the ability of a robot rather than their own ability. For these participants we pool the updating

data from both experiments and estimate:

logit(µ̂eit)− logit(µ̂eit) = βH · I(sit = H)λH + βL · I(sit = L)λL +

+βRobotH · I(e = Robot) · I(sit = H)λH + βRobotL · I(e = Robot) · I(sit = L)λL + εti (7)

Here, e indexes experiments (Ego or Robot), so that the interaction coefficients βRobotH and βRobotL

tell us whether participants process identical information differently across both treatments. Given

the smaller sample available we impose δ = 1 and estimate by OLS. Table 4 reports results.
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Table 4: Belief Updating: Own vs. Robot Performance

Regressor I II III

βH 0.426 0.349 0.252
(0.087)∗∗∗ (0.066)∗∗∗ (0.043)∗∗∗

βL 0.330 0.241 0.161
(0.050)∗∗∗ (0.042)∗∗∗ (0.033)∗∗∗

βRobotH 0.362 0.227 0.058
(0.155)∗∗ (0.116)∗ (0.081)

βRobotL 0.356 0.236 -0.006
(0.120)∗∗∗ (0.085)∗∗∗ (0.089)

P(βH + βRobotH = 1) 0.128 0.000 0.000
P(βL + βRobotL = 1) 0.004 0.000 0.000
P(βH = βL) 0.302 0.118 0.039
P(βH + βRobotH = βL + βRobotL ) 0.454 0.316 0.030
N 160 248 480
R2 0.567 0.434 0.114

Each column is a separate regression. The outcome in all regressions is the change in the log belief ratio. βH and βL

are the estimated effects of the log likelihood ratio for positive and negative signals, respectively. βRobotH and βRobotL

are the differential responses attributable to obtaining a signal about the performance of a robot as opposed to one’s

own performance. Estimation samples are restricted to participants who participated in the follow-up experiment

and observed the same sequence of signals as in the main experiment. Column I includes only participants who

updated at least once in the correct direction and never in the wrong direction in both experiments. Column II adds

participants who never updated their beliefs. Column III includes all participants. Robust standard errors clustered

by individual reported in parentheses. Statistical significance is denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Result 6. Conservatism is significantly reduced when participants learn about a robot’s performance

rather than their own performance.

The baseline coefficients βH and βL are similar to their estimated values for the larger sample

(see Table 1), suggesting that participation in the follow-up was not selective on updating traits.

The interaction coefficients are both positive and significant—they imply that participants are

roughly twice as responsive to feedback when it concerns a robot’s performance as they are when

it concerns their own performance. In fact, we cannot reject the hypothesis that βH + βRobotH = 1

(p = 0.13), though we can still reject βL + βRobotL = 1 (p = 0.004). While conservatism does not

entirely vanish, it is clearly much weaker. Interestingly, participants are also less asymmetric in

relative terms when they update about robot performance
(
βH
βL

>
βH+βRobotH

βL+βRobotL

)
. We cannot reject

the hypothesis that they update symmetrically about robot performance such that βH + βRobotH =

βL + βRobotL (p = 0.45).31

31The robot condition might not eliminate all updating biases if these biases are due to anticipatory motives as
in Brunnermeier and Parker (2005): participants might still want to believe that their robot will earn them a cash
prize. The fact that updating about robots is significantly different from updating about ones’ self lets us rule out
both purely cognitive interpretations and purely anticipatory ones, but it is possible that anticipation still plays some
role. On the other hand, the fact that updating about robots is not significantly asymmetric suggests that we cannot
reject the null of no anticipatory utility.
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5 Biased Updating and Economic Outcomes

We have analyzed how participants actively manage their self-confidence. However, we have not yet

demonstrated that self-confidence management is economically significant: unless biased updating

leads to biased outcomes we are just describing a psychological phenomenon. The link between

biased beliefs and actions is a largely unquestioned assumption in the literature. We believe how-

ever that it is the key that turns a psychological phenomenon into an economically relevant one.

Basically, we need to address the skepticism that agents who can control how they form beliefs may

also control how they use such biased beliefs and thereby potentially neutralize any biases accrued

while forming beliefs. We therefore next present results from our second follow-up experiment. As

a reminder, participants in this experiment participated in an effort task and chose between two

compensation schemes: a piece rate, and a tournament scheme in which only top scorers were paid

(see Section 2.5 for full details).

5.1 Do Beliefs Matter?

We first examine whether reported beliefs drive behavior. Letting ACSi ∈ {0, 1} indicate participant

i’s decision to compete in the tournament stage, and µ̂CSi her reported subjective probability of

winning that tournament, we are interested in estimating

ACSi = ϕ+ ϑµ̂CSi + εi (8)

Column 1 of Table 5 estimates this equation via OLS and finds a positive and significant association:

a 1% increase in the subjective probability of winning is associated with a 1% increase in the

probability of competing. Earlier work also typically finds a positive correlation between µ̂CSi and

ACSi (e.g. Niederle and Vesterlund (2007)). The interpretation of this result is clouded, however,

by the fact that beliefs are endogenous variables potentially correlated with any number of other

unobservable personal attributes that affect competitiveness.

To address this problem we exploit exogenous variation in beliefs generated by our first experi-

ment (feedback stage) to instrument for self-confidence in the competition stage. The basic idea is

simple: conditional on whether a participant actually scored in the top half, the number of positive

signals that participant observed is purely random. We therefore use this sum as an instrument for

confidence prior to competing in the second experiment.32 Column 2 of Table 5 shows that relative

performance feedback affects beliefs on relative performance among the same pool of participants

that persisted across time and across domains. Each positive signal received in the first experiment

increases a participant’s subjective belief that they can win a competition by 5 percentage points

(p < 0.05). Besides establishing instrument relevance, this also illustrates that participants took

32One potential concern with this strategy is that the number of positive signals a participant observed affected
their likelihood of participating in the second experiment, generating selection bias. To test this we regressed an
indicator for participation on the number of positive signals received, conditional on ability, and estimated a small
(β = 0.01) and insignificant (p = 0.74) relationship. Results available on request.
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Table 5: Confidence and Competition: IV Estimates

OLS First Stage IV Reduced Form Over-controlled

Confidence (Experiment 2) 0.010 0.024 0.009
(0.002)∗∗∗ (0.010)∗∗ (0.002)∗∗∗

Feedback (Experiment 1) 5.159 0.125 0.077
(2.122)∗∗ (0.053)∗∗ (0.053)

Ability (Experiment 1) 0.222 -9.488 0.226 -0.004 0.084
(0.089)∗∗ (5.397)∗ (0.091)∗∗ (0.139) (0.131)

N 102 102 102 102 102
R2 0.221 0.056 - 0.104 0.240

Notes: Each column reports a separate regression. The outcome in Columns 1 and 3-5 is an indicator equal to 1 if the

participant chose to compete in Experiment 2; the outcome in Column 2 is the participant’s subjective probability

of winning the competition in Experiment 2. The regressors are the participant’s subjective probability of winning

the competition in Experiment 2 (“Confidence”), the sum of the signals the participant received in Experiment

1 (“Feedback”), and an indicator for whether the participant scored in the top half in Experiment 1 (“Ability”).

Estimation via OLS is reported in Columns 1-2 and via instrumental variables in Column 3 using “Feedback” as the

excluded instrument. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

information from the first experiment seriously, as it had a lasting impact on their self-confidence

four weeks later.

In Column 3 we use this instrument to estimate the causal effect of confidence on competitive-

ness. We find that confidence has a significant, positive effect on the probability of competing.

Moreover, the estimated magnitude of this effect is more than twice as large as the OLS estimate:

a 1% increase in the subjective probability of winning causes a 2.4% increase in the probability

of competing. This size difference, whether due to measurement error in beliefs or to unobserved

heterogeneity, implies that beliefs may have substantially more explanatory power for decisions to

compete than earlier OLS estimates imply. More broadly, the result confirms that beliefs about

one’s own ability matter for subsequent decision-making.

Result 7. A participant’s confidence causally increases her propensity to enter a tournament.

One outstanding concern is that the beliefs we measure might be far from a sufficient statistic for

behavior. For example, participants might maintain dual mental systems, one of which responds to

questions like “how likely are you to win” (even when incentivized) while another guides decisions

like whether to compete. If this were true then the feedback participants receive concerning their

relative performance from our first experiment would affect decision-making in the second above

and beyond, or independent of its effect on reported beliefs µ̂CSi . To test this hypothesis, Columns

4 and 5 examine the reduced-form impact of information from the first experiment on competition

in the second before and after controlling for beliefs. While positive feedback does increase com-

petitiveness, this effect shrinks and becomes insignificant once we control for reported beliefs. The

data thus support the view that beliefs to a large extent incorporate information accrued from the
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Table 6: Confidence affects competition similarly for more and less conservative types

First Stage Reduced Form IV
LC MC LC MC LC MC

Confidence (Experiment 2) 0.036 0.030
(0.015)∗∗ (0.027)

Feedback (Experiment 1) 6.640 2.429 0.238 0.073
(4.050) (2.583) (0.077)∗∗∗ (0.075)

Ability (Experiment 1) -6.126 -12.984 -0.097 0.030 0.123 0.422
(9.921) (6.228)∗∗ (0.198) (0.203) (0.208) (0.310)

N 49 47 49 47 49 47
R2 0.087 0.089 0.272 0.045 - -

Notes: Each column reports a separate regression. The outcome in Columns 1-4 is the participant’s subjective

probability of winning the competition in Experiment 2; the outcome in Columns 5-6 is an indicator equal to 1 if the

participant chose to compete in Experiment 2. The estimation sample includes participants who update more (less)

conservatively than the median in columns labelled “MC” (“LC”). The regressors are the participant’s subjective

probability of winning the competition in Experiment 2 (“Confidence”), the sum of the signals the participant

received in Experiment 1 (“Feedback”), and an indicator for whether the participant scored in the top half in

Experiment 1 (“Ability”). Estimation via OLS is reported in Columns 1-4 and via instrumental variables in Columns

5-6 using “Feedback” as the excluded instrument. Heteroskedasticity-robust standard errors in parenthesis. Statistical

significance is denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

past.

5.2 Can Biased Updating be “Unraveled”?

While we have shown that (biased) beliefs do affect behavior, it is still conceivable that participants

can at least partially “undo” the effects of their biased belief updating when time comes to decide.

For example, it could be that more conservative agents who have beliefs that are less sensitive to

feedback than their peers in turn make decisions that are more sensitive to beliefs. On net, these

agents’ behavior could respond similarly to feedback as their less conservative peers. Conservatism

would then amount to a simple “re-scaling” of beliefs rather than a bias that affects behavior.

To test whether conservatism in updating affects behavior we categorize participants into those

who update more conservatively (MC) and less conservatively (LC) than average in our base ex-

periment.33 We then repeat the instrumental variables estimation process reported in Table 5

separately for each of these two groups. If beliefs have a different scale for more conservative up-

daters we should see larger IV coefficients for the more conservative group. In fact we find the

opposite (Table 6); the IV point estimate for more conservative updaters is similar to and slightly

smaller than that for less conservative ones. While the former estimate is imprecise, there is no

direct evidence that beliefs mean something different for more conservative updaters.

33We do this as follows. First, for each round r and signal type we rank participants by the magnitude of the change
in their logit belief, and normalize these ranks to [0, 1]. Second, we define a participant’s overall responsiveness to
information as the average across all four rounds of their rank-responsiveness. Third, we define participants as “more
responsive” if their average rank exceeds 0.5 and “less responsive” otherwise.
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Figure 5: More conservative updaters have less accurate beliefs.
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Plots the relationship between subjective and objective probabilities of winning a tournament separately for less

conservative (dark grey) and more conservative (light grey) participants.

Result 8. Confidence affects decisions equally for more and less conservative participants.

Our data allow us to conduct a second test of the impact of conservatism. Specifically, conser-

vatism implies that participants’ beliefs respond less to information. Therefore, more conservative

participants should have less self-knowledge than less conservative participants. Figure 5 illustrates

the degree of self-knowledge of more- and less-conservative agents. Formally, it plots the relation-

ship between participants’ subjective beliefs that they would win a tournament and their objective

probability, given their score. The relationship is significantly and substantially weaker for more

conservative updaters.

Our two-experiment design allows us to instrument for beliefs (by directly affecting them

through feedback) providing direct evidence of the effect of beliefs on behavior. Furthermore,

we showed that beliefs affect behavior equally, independently whether such beliefs derived from

agents who are more or from agents who are less conservative in updating beliefs. Therefore, biases
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that weaken the relationship between types of participants and beliefs in turn weaken the relation-

ship between types and actions, leading to mistakes. Specifically, high-ability types who update

conservatively will tend to take too few risks, while low-ability types who do so will take too many.

6 Optimally Biased Bayesian Updating

Our experimental data show that participants update their beliefs with substantial biases and that

these beliefs then drive subsequent decision-making. At the same time, some properties of Bayesian

updating (invariance, sufficiency and stability) do appear to hold quite well in our data, at least

in an aggregate sense. In this section we show that these properties provide enough structure to

model biased updating coherently in an optimizing framework, and that the biases evident in our

data emerge naturally as a result.

We study an agent who is a high type H with probability µ0 and otherwise a low type L

(reflecting our experimental design). There are T discrete time periods in each of which the agent

receives a signal st about her ability. The agent aggregates the stream of signals up to time t into

a subjective belief µ̂t. We allow the agent’s belief to differ from the objective probability µt derived

using Bayes’ rule. The agent balances two objectives when forming biased subjective beliefs: she

wants to make good instrumental decisions, but also cares about her ego and wants to believe

that she is a high type. We first define instrumental and belief utility formally and derive the

agent’s optimal beliefs if she could choose them freely. We then derive the constrained-optimal

updating behavior of biased Bayesians who manage their self-confidence. We also show that this

bias remains approximately optimal even if the agent’s instrumental and belief utility changes,

which lets us think of the optimal bias as an evolutionary adjustment.

6.1 Utility and Optimal Beliefs

We start with instrumental utility. With equal probability, nature selects one of the T time periods

as the “investment period”. In this period the agent must decide whether or not to take an action

that yields a positive payoff if and only if her type is high. For example, the agent might consider

investing in the stock market and has to decide if she is a skilled investor, or she might consider

taking a challenging major in college and has to decide whether she is smart enough. Formally,

the agent can make an investment which pays 1 in the final period T if she is of high type or 0

otherwise.34 The investment has a cost c ∈ [0, 1] which is drawn from a well behaved continuous

distribution G ∈ C2[0, 1] at the time of the decision. Not investing gives a payoff of 0. The optimal

decision of a Bayesian decision maker is thus to invest if and only if c < µt. Consistent with the

results of our second experiment, we assume that a biased agent behaves as if she were a Bayesian

and invests iff c < µ̂t. Hence, biasing updating is costly because it leads to worse decisions.

34The assumption that the instrumental value of investing is realized in the last period simplifies our calculation of
belief utility because the agent only learns her type in the final period and therefore manages her belief utility over
all time periods 1 ≤ t ≤ T .
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Figure 6: Per-period utilities L(µ̂t) and H(µ̂t) of the low and high type agents
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The agent also derives direct belief utility b(µ̂t) in period t from her subjective belief, where

b ∈ C2[0, 1] is a well-behaved, strictly increasing function normalized such that b(0) = 0. The model

is agnostic over the various kinds of belief utility discussed in the literature; to capture them in a

reduced-form way we make no assumptions about the shape of b(·) other than monotonicity.35 The

combined objective function of the agent is the sum of her average belief utility and her expected

instrumental utility:

U(µ̂0, .., µ̂T ) =
1

T

T∑
t=1

 b(µ̂t)︸ ︷︷ ︸
belief utility

+

∫ µ̂t

0
(µt − c) dG(c)︸ ︷︷ ︸

instrumental utility

 (9)

When b(µ̂) = 0 the agent has no belief utility and behaves like a classical economic agent. Note

that because payoffs are time-averaged T serves as a measure of the information-richness of the

environment. In stating results we will make use of the notion of relative time τ ∈ [0, 1] which we

associate with absolute time bτT c.
To build intuition it will be useful to study the per-period expected utility of the low and high

type agents, which we denote L(µ̂t) and H(µ̂t):

L(µ̂t) = b(µ̂t)−
∫ µ̂t

0
cdG(c) (10)

H(µ̂t) = b(µ̂t) +

∫ µ̂t

0
(1− c)dG(c)

35In our model, subjective beliefs will converge for most time periods as T → ∞. Other models in the literature
analyze settings with few feedback periods where subjective beliefs remain noisy and hence the concavity or convexity
of the belief utility function matters (see for example Kőszegi (2006)).
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Suppose for now that agents of low and high type could choose subjective beliefs µ∗L and µ∗H to

maximize these respective expressions. As Figure 6 illustrates, the high type agent would always

choose µ∗H = 1 because both her belief and instrumental utility are increasing in her subjective

belief. The optimal (and possibly non-unique) µ∗L for the low type agent depends on b(·), however:

an agent without belief utility chooses µ∗L = 0 while an agent with ego concerns may choose

µ∗L > 0. We focus on the interesting case µ∗L > 0 in which the low-type agent prefers on net to hold

an inflated belief.36 We also restrict attention to decision problems with L(1) < 0 which implies

µ∗L < 1, or in other words that the low-type agent would not want to convince herself that she was

the high type. While this extreme form of bias is conceivable in situations where there are no real

stakes (or belief utilities are large), it generates no interesting predictions.

6.2 Optimal Biased Bayesian Updating

Agents receive a stream of i.i.d. signals in each period t. A signal can take finitely many values

which we index by k (1 ≤ k ≤ K) with distribution FH in the high state and FL in the low state.

Let λk = log(FH(k)/FL(k)) be the log-likelihood ratio for realization k. Every signal realization

is informative such that λk 6= 0. Motivated by our experimental results, we assume that agents

update their belief as biased Bayesians whose updating process satisfies invariance, sufficiency and

stability.

Definition 1. A biased Bayesian updating process consists of an initial subjective prior µ̂0 and an

updating rule

logit(µ̂t+1) = logit(µ̂t) + βkλk (11)

where βk ≥ 0.

We refer to β as the responsiveness function and to β̃k = βk/maxk βk as the normalized re-

sponsiveness.37 Biased Bayesian updating encompasses standard Bayesian updating as a special

case (µ̂0 = µ0 and βk = 1) while capturing the idea that the agent may downplay or overstate the

informativeness of certain kinds of feedback. Following Brunnermeier and Parker (2005), we say

that a biased Bayesian updating process is optimal if it maximizes expected total utility (9) among

all such processes.38 We do not take a strong view here on the extent to which the agent need be

conscious of biasing her updating; one can also interpret optimal bias as the result of a subcon-

scious tendency to select habits of thought that increase well-being, or of a longer-run evolutionary

process.

When the agent has no belief utility the optimum is, reassuringly, to be unbiased.

36It is not difficult to come up with conditions such that µ∗L > 0. For example, any linear belief utility function
will suffice. We know that L(0) = 0 and L(1) < 0. Moreover, for small x we have L(x) > 0 because G′ is continuous
and hence bounded and therefore

∫ x
0
cdG(c) ≤

∫ x
0
cmaxc∈[0,1] (G′(c)) dc = 1

2
(x)2 maxc∈[0,1] (G′(c)).

37The normalized responsiveness is only defined for responsiveness functions which are not zero everywhere.
38Existence is guaranteed since (a) expected utility is continuous in µ̂0 ∈ (0, 1) and βk; (b) using the logic of

proposition 2, one can show that there are ε > 0 and M > 0 such it is never optimal to choose µ̂0 < ε, µ̂0 > 1− ε or
βk > M . Hence, the optimal parameters live in a compact Euclidean metric space.
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Proposition 1. Let T ≥ 2. The optimal biased Bayesian updating process for an agent without

belief utility (b(µ̂) = 0 for all µ̂) is Bayes’ rule: µ̂0 = µ0 and βk = 1 for all k.

To characterize the case with belief utility we introduce the notions of conservatism and down-

ward neutral bias, which is a strong form of asymmetry.

Definition 2. A biased Bayesian updating process is conservative if the agent always responds less

to new information than an unbiased Bayesian (maxk βk < 1). It exhibits a downward neutral

bias (DNB) if
∑

k FL(k)β̃kλk = 0.

DNB implies that the agent’s expected logit-belief remains unchanged if the state is low; the

agent essentially interprets the stream of information as white noise. DNB is a generalized notion

of asymmetry : in the binary signals case, if H (L) denotes the signal with the higher (lower)

log-likelihood ratio, DNB implies βH > βL.

Proposition 2. The optimal updating process has the following features: (1) βTk → 0 as T → ∞
for all k so that the agent updates conservatively for large T ; (2)

∑
k FL(k)β̃Tk λk → 0 as T →∞ so

that the agent exhibits DNB for large T ; (3) if moreover the low type’s optimal belief µ∗L is unique

and L′′(µ∗L) < 0 then µ̂T0 → µ∗L; (4) for any relative time τ > 0 the agent’s belief converges in

probability to µ∗L in the low state and to µ∗H = 1 in the high state.

The intuition for this result can be illustrated graphically for the binary signals case. The

evolution of logit-beliefs described in Equation 11 follows a random walk: in each period, the logit-

belief increases by βHλH with probability FH(H) for the high type (FL(H) for the low type) and

otherwise decreases by βLλL. The mean logit-belief of the high type, γ̂Ht , and the variance in

logit-beliefs,
(
σ̂Ht
)2

, can hence be expressed as:

γ̂Ht = logit(µ̂0) + t [FH(H)βHλH + (1− FH(H))βLλL] (12)(
σ̂Ht
)2

= tFH(H)(1− FH(H)) (βHλH − βLλL)2

We can derive analogous expressions γ̂Lt and
(
σ̂Lt
)2

for the mean and variance of the low type’s

logit-belief by replacing the probability FH(H) with FL(H). The left panel of Figure 7 shows the

mean logit belief of the high type (increasing solid line) and low type (decreasing solid line) when

the agent is an unbiased Bayesian. Note that the mean logit beliefs of both types converge to

+∞ and −∞ at rate t while the standard deviation increases only at rate
√
t. Therefore, beliefs

converge to either 1 or 0 in probability.

The biased Bayesian would prefer keep her beliefs close to either 1 (in the high state) and

µ∗L > 0 (in the low state). By choosing an initial belief close to her optimal low-type’s belief µ∗L
and by becoming asymmetric (βH/βL ↑) she can slow the rate at which the low type’s logit-belief

drifts to −∞, or even eliminate this drift altogether by choosing a DNB. The right panel of Figure

7 illustrates this idea. Asymmetry alone is insufficient, however, without conservatism: unless the

agent also reduces her responsiveness to information the variance of the low type’s logit-beliefs will
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Figure 7: Evolution of logit-beliefs of an unbiased Bayesian (left panel) and an optimally biased
Bayesian (right panel)
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Figure 8: Numerical optima for finite T and binary signals
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4
µ̂,

p = 0.75, q = 0.25

make it impossible to keep logit-beliefs close to µ∗L. Although the agent’s mean logit-belief in the

low state stays close to µ∗L, her realized logit-belief will typically be either very small or very large.

Since L(0) = 0 and L(1) < 0 this is costly; the low-type agent would in fact be worse off than

under unbiased Bayesian updating. Conservatism addresses this problem by keeping the low-type

agent’s beliefs close to µ∗L in probability. The proof of Proposition 2 formalizes this intuition: it

shows that any updating process that is not both conservative and downward-neutral biased must

do strictly worse than a process that is, and that an optimal updating process allows the agent to

closely approximate her “first best” payoffs by keeping her belief bounded away from zero at µ∗L in

the low state while still learning her type rapidly in the high state.

While Proposition 2 characterizes optimal behavior for large T , we can also characterize the

finite-T case numerically. Figure 8 shows the optimal updating policy over the range 1 ≤ T ≤ 80

for a binary signals example with a uniform cost distribution, an objective prior of µ0 = 1
2 and
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belief utility b(µ̂) = 1
4 µ̂. These parameters satisfy the long-term learning condition L(1) < 0 and

imply µ∗L = 1
4 : the agent would like to maintain a confidence level of 25% in the low state. As in

our experiment, signals are accurate with probability 0.75. The agent is optimally asymmetric over

the entire range, conservative for T > 8, and increasingly conservative as T increases.

6.3 Robustness of Biased Bayesian Updating

The optimal updating rule βT that we characterized in Proposition 2 depends on the specific

decision problem (summarized by per-period utilities L(µ̂) and H(µ̂)). However, we can show that

this dependence is weak in the following sense: if the agent faces a new decision problem (L̃, H̃)

and continues to use the old updating rule βT , then she can do almost as well as when she uses the

new optimal updating rule β̃T .

Proposition 3. Fix a signal distribution (FH , FL). Consider two decision problems (L,H) and

(L̃, H̃) with optimal updating rules βT and β̃T , respectively. Assume that the agent uses the updating

rule βT for the latter problem. Then the agent’s combined utility and subjective belief at any relative

time τ converge in probability to the first-best values as T →∞.

The result implies that the agent can do very well by applying a uniform updating bias (inde-

pendent of the decision problem) and by choosing an initial subjective prior close to the low-type’s

optimal belief. This observation allows for the possibility of an evolutionary process in which Na-

ture selects an updating rule for a generic decision problem which the agent then applies to different

specific problems throughout life.

7 Conclusion

We use a large-scale experiment to characterize belief updating in a setting where ego is at stake.

We document two biases: participants are asymmetric as they respond more to positive than neg-

ative information, and conservative by overall responding less to feedback than a Bayesian. It

seems plausible that asymmetric updating is a bias rather than a cognitive error. This is, however,

less obvious for conservatism. A control treatment where participants update on a random event

rather than an ego relevant one provides evidence that conservative updating is also a behavioral

bias. The second experiment shows that beliefs have a causal impact on economic choices. More

importantly, we show that more and less conservative participants respond equally to an equiva-

lent change in their confidence. If biased beliefs were only a psychological phenomenon without

economic consequences, then more conservative updating led to a greater response to beliefs. An-

other piece of evidence for the economic consequences of biased updating is that more conservative

participants have less self-knowledge about their ability than others. Finally, we provide a simple

model illustrating how asymmetric and conservative updating can be complementary techniques

for self-esteem management.
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Our results on updating biases and their link to decision-making point towards several practical

applications. First of all, policy makers should take updating biases into account when communi-

cating feedback. Two sequences of signals that have the same Bayesian information content (such

as many weak signals versus one strong signal) might induce very different belief changes. This

issue is salient in labor markets, for example, given the recent shift towards more frequent perfor-

mance reviews (Church et al., 2012). Feedback may also need to be tailored to the worker if (as

subsequent work suggests) there is variation in how they process it. We have already seen (above)

that more conservative types tend to have less informative beliefs, and are thus less likely to be

either over- or under-confident even given the same sequence of signals. Correlating updating types

with relevant real-world behaviors such as overconfidence, risk-taking and competitiveness might

help explain some of these disparate phenomena as manifestations of updating biases.

Gender differences is an important special case of heterogeneity. We briefly summarize gender

differences in our data in the supplemental materials (S-1). We see that men are more confident than

women both unconditionally and conditional on their true ability, significantly less conservative

when updating, and less averse to feedback. Interpreted through the lens of our model, these

patterns are consistent with women placing a relatively high value on belief utility. Together

the results and the model may thus help to explain why male participants tend to report higher

self-confidence than women (Barber and Odean, 2001) and show a greater willingness to enter

competitions (Niederle and Vesterlund, 2007).

While we focus on belief updating here due to space constraints, we have also found suggestive

evidence that selective acquisition of information plays a role in self-confidence management. In

the supplemental materials (S-2) we show that a sizeable minority of our participants are strictly

averse to feedback, that low confidence has a causal effect on aversion, and that this is consistent

with the theoretical framework in Section 6. This provides support for models that emphasize

selective acquisition, such as Kőszegi (2006), and complements work documenting cognitive errors

in information acquisition decisions such as Descamps et al. (2021). It also opens the broader

question as to what kind of feedback or information sources agents would choose. For example,

is there a link between how much agents bias their beliefs and the extent to which they demand

information from sources that differ by how biased an information they provide.

32



References

Adebambo, Biljana N. and Xuemin (Sterling) Yan, “Momentum, Reversals, and Fund

Manager Overconfidence,” Financial Management, 2016, 45 (3), 609–639.

Akerlof, George A. and William T. Dickens, “The Economic Consequences of Cognitive

Dissonance,” American Economic Review, 1982, 72 (3), 307–319.

Allen, Franklin, “Discovering personal probabilities when utility functions are unknown,” Man-

agement Science, 1987, 33 (4), 542–544.

Arellano, Manuel and Bo Honore, “Panel data models: some recent developments,” in J.J.

Heckman and E.E. Leamer, eds., Handbook of Econometrics, Vol. 5 of Handbook of Econometrics,

Elsevier, 2001, chapter 53, pp. 3229–3296.

and Stephen Bond, “Some Tests of Specification for Panel Data: Monte Carlo Evidence and

an Application to Employment Equations,” Review of Economic Studies, April 1991, 58 (2),

277–97.

Barber, Brad M. and Terrance Odean, “Boys Will Be Boys: Gender, Overconfidence, And

Common Stock Investment,” The Quarterly Journal of Economics, February 2001, 116 (1), 261–

292.

Barron, Kai, “Belief updating: does the ‘good-news, bad-news’ asymmetry extend to purely

financial domains?,” Experimental Economics, Mar 2021, 24 (1), 31–58.

Benabou, Roland and Jean Tirole, “Self-Confidence and Personal Motivation,” Quarterly

Journal of Economics, 2002, 117 (3), 871–915.

Benjamin, Daniel J., “Chapter 2 - Errors in probabilistic reasoning and judgment biases,” in

B. Douglas Bernheim, Stefano DellaVigna, and David Laibson, eds., Handbook of Behavioral

Economics - Foundations and Applications 2, Vol. 2 of Handbook of Behavioral Economics: Ap-

plications and Foundations 1, North-Holland, 2019, pp. 69–186.

Benoit, Jeanâ Pierre and Juan Dubra, “Apparent Overconfidence,” Econometrica, 09 2011,

79 (5), 1591–1625.

Brocas, Isabelle and Juan D. Carrillo, “The value of information when preferences are dy-

namically inconsistent,” European Economic Review, 2000, 44, 1104–1115.

Brunnermeier, Markus K. and Jonathan A. Parker, “Optimal Expectations,” American

Economic Review, September 2005, 95 (4), 1092–1118.

Burks, Stephen V., Jeffrey P. Carpenter, Lorenz Götte, and Aldo Rustichini, “Over-

confidence and Social Signalling,” Review of Economic Studies, 2013, 80 (3), 949–983.
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A Proofs

A.1 Proof of Proposition 1

When b(µ̂) = 0 for all µ̂, the objective function in (9) is maximized if and only if for any possible
history of signals at any time t ≤ T and associated Bayesian belief µt the following holds: µ̂t > c
iff µt > c. Since the cost distribution is continuous and positive, this implies µ̂t = µt for any
signal history that generates the objective Bayesian posterior µt. Because all signal realizations
are informative (and hence occur with positive probability) we obtain for t = 1 already K linear
equations of the form logit(µ̂0) + βkλk = logit(µ0) +λk, one for each signal realization. As we have
K+1 unknowns we can use any of the signal realizations at time t = 2 – e.g. two consecutive k = 1
realizations – to uniquely pin down βk = 1 and µ̂0 = µ0.

A.2 Auxiliary Approximation Lemma

For our proofs, we will frequently exploit that logit beliefs in our model are sums of independent
random variables. While these variables are i.i.d. their distribution generally depends on T (because
the responsiveness function changes with T ), so we cannot use the standard central limit theorem.
Instead we use Stein’s 1972 method to bound the approximation error of the central limit theorem
in our framework.

Consider the random variable Y defined over the realizations k of a single signal:

Y (k) = β̂kλk with probability FL(k) (13)

where β̂k ≤ 1 is the normalized responsiveness (which implies that for at least one realization we
have β̂k = 1). The following lemma will be useful:

Lemma 1. Consider any normalized responsiveness function. Let k∗ = arg mink |λk|. We then
have V ar(Y ) ≥ FL(k∗) (1− FL(k∗))λk∗.

Proof: The variance of Y is minimized over all normalized responsiveness functions if βk∗ = 1 and
βk = 0 for all k 6= k∗. This reduces Y to a simple Bernoulli random variable and the result
follows.

We define two new constants:

ML = 5

(
maxk λk√

FL(k∗) (1− FL(k∗))λk∗

)3

MH = 5

(
maxk λk√

FH(k∗) (1− FH(k∗))λk∗

)3

We can now prove the following approximation for subjectve beliefs:

Lemma 2. Let ε > 0 and −∞ ≤ a < b ≤ ∞. The random variable W =
logit(µ̂bτTc)−γ̂LbτTc

σ̂LbτTc
satisfies:

Prob(a ≤W ≤ b|L) ≤ Φ(b+ 2ε)− Φ(a− 2ε) +
ML

ε
√
τT

where Φ is the cdf of the normal distribution N(0, 1). An analogous result holds for beliefs in the
high state where ML is replaced by MH .
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Note, that the upper bound depends only on ε, τT and the distribution of the signal distribution
but (importantly) not on the particular responsiveness function.

Proof: WLOG we focus on low-state beliefs only. We define the function h:39

h(x) =



0 if x < a− 2ε
1

2ε2
(x− a+ 2ε)2 if a− 2ε ≤ x < a− ε

1− 1
2ε2

(x− a)2 if a− ε ≤ x < b
1 if a ≤ x < b
1− 1

2ε2
(x− b)2 if b ≤ x < b+ ε

1
2ε2

(x− b− 2ε)2 if b+ ε ≤ x < b+ 2ε
0 if b+ 2ε ≤ x

This function approximates the indicator function that takes value 1 on the interval [a, b] such
that h is bounded above by the indicator function on the interval [a − 2ε, b + 2ε], bounded
below by the indicator function on [a, b] and bounded derivative |h′(x)| ≤ 1

ε . Now we use
Stein’s inequality to establish

|E[h(W )]− E[h(Z)]| ≤ maxx h
′(x)5E|Xi|3√
τT

where Z ∼ N(0, 1) and Xi are i.i.d. random variables of the form X = Y−E(Y )√
V ar(Y )

. Thus

Prob(a ≤W ≤ b) ≤ E[h(W )] ≤ E[h(Z)] +
(maxx h

′(x)) 5E|Xi|3√
τT

and the result of the lemma then follows.

A.3 Uniform Downward-Neutral Bias

We define a particular responsiveness function which we call the uniform downward neutral bias
that approximates the utility of the unrestricted agent who can freely choose her beliefs in both
states of the world. This will be useful to prove proposition 2 where we show that non-conservative
responsiveness functions or those which do not satisfy the DNB property cannot be optimal because
they cannot approximate the utility of the unrestricted agent.

For a given signal distribution, we partition the set of possible realizations into an “Up-set”
U = {k|λk > 0} and a “Down-set” D = {k|λk < 0}. We fix a constant 1

2 < θ < 1. For each T we
define the following biased Bayesian updating process:

µ̂T0 = µ∗L

βk =


T−θ for k ∈ U

T−θ
∑

k∈U FL(k)λk

−
∑

k∈D FL(k)λk︸ ︷︷ ︸
κ

for k ∈ D (14)

Note, that 0 < κ < 1 because the unbiased agent’s expected change in logit-beliefs in the low state
has to be negative (hence,

∑
k∈U FL(k)λk +

∑
k∈D FL(k)λk < 0). We can derive the mean and

39For a = −∞ (b =∞) we adapt the definition naturally and let h(x) = 1 for x < b (x > a).
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variance of logit-beliefs at relative time τ in both states:

γ̂HτT = logit(µ∗L) + τT 1−θ

(∑
k∈U

FH(k)λk + κ
∑
k∈D

FH(k)λk

)
︸ ︷︷ ︸

ΓH

γ̂LτT = logit(µ∗L)(
σ̂HτT

)2
= τT 1−2θ

(∑
k∈U

FH(k)λ2
k + κ2

∑
k∈D

FH(k)λ2
k − Γ2

H

)
︸ ︷︷ ︸

ΣH>0(
σ̂LτT

)2
= τT 1−2θ

(∑
k∈U

FL(k)λ2
k + κ2

∑
k∈D

FL(k)λ2
k

)
︸ ︷︷ ︸

ΣL>0

(15)

Note, that ΓH > 0 because the unbiased agent’s expected change in logit-beliefs in the high state
is strictly positive (hence,

∑
k∈U FH(k)λk +

∑
k∈D FH(k)λk > 0) and κ < 1. We call this particular

updating process the uniform downward-neutral bias (uniform DNB) because a uniform bias factor
is applied to up and down signal realizations, respectively, and logit-beliefs for the low type follow
a random walk without drift.

Lemma 3. Assume a biased Bayesian with uniform DNB. At any relative time τ > 0, the agent’s
high state belief converges in probability to 1 while the agent’s low state belief converges in probability
to µ∗L. The total utility (9) of the agent converges to the total utility of an unrestricted agent with
belief µ∗L in the low state and belief 1 in the high state.

Figure 7 illustrates the intuition for the lemma. In the high state, the agent’s logit-belief at
relative time τ is of order τT 1−θ according to (15). This expression converges to infinity. In the
low state, the agent’s logit-belief behaves like a driftless random walk whose standard deviation is
of order

√
τT

1
2
−θ, which converges to 0.

To formalize this argument, we first show that for any lower bound m the probability that the
high type’s logit-belief lies above m at relative time τ converges to 1 as T →∞:

P (logit(µ̂bτT c) < m|H) = P

(
logit(µbτT c)− γ̂HbτT c

σ̂HτT
<

m− γ̂HbτT c
√
τT

1
2
−θ√ΣH

|H

)

≤ Φ

(
m− γ̂HbτT c
√
τT

1
2
−θ√ΣH

+ 2ε

)
+

MH

ε
√
τT

For the last inequality we use our approximation lemma 2 with a = −∞ and any ε > 0. We now

exploit the fact that
m−γ̂HbτTc

√
τT

1
2−θ
√

ΣH
→ −∞, which holds since γ̂HbτT c → ∞ and the numerator is of

order O(τT 1−θ) while the denominator is only of order O(
√
τT

1
2
−θ).

We next show that for any ε′ > 0 the probability that the low type’s belief stays within an
ε′-neighborhood around logit(µ∗L) converges to 1 in probability as T →∞. Note, that the expected
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logit-belief at any relative time τ is logit(µ∗L) under the uniform DNB:

P (|logit(µ̂bτT c)− logit(µ∗L)| > ε′|L) =

= P

(
logit(µ̂bτT c)− logit(µ∗L)

σ̂LτT
< − ε′

σ̂LτT
|L

)
+ P

(
logit(µ̂bτT c)− logit(µ∗L)

σ̂LτT
>

ε′

σ̂LτT
|L

)

≤ Φ

(
−ε′

√
τT

1
2
−θ√ΣL

+ 2ε

)
+ 1− Φ

(
ε′

√
τT

1
2
−θ√ΣL

− 2ε

)
+

2ML

ε
√
τT

For the last inequality we fix any ε > 0 and use our approximation lemma 2 twice. We can make
this upper bound as small as we want for sufficiently high T since θ > 1

2 .
Also note that we can obtain a uniform upper bound for all relative time by setting τ = 1 on

the RHS. Since the cost distribution is atomless, it follows that the expected utility of the low type
agent converges to the utility of the unconstrained low type with constant belief µ∗L.

A.4 Proof of Proposition 2

Step 1: Conservatism We first show conservatism (claim 1 of the proposition) through proof by
contradiction. The intuition for conservatism is as follows: assume the agent’s responsiveness does
not converge to 0. There will be some realization k and a sequence (T j), such that |βT jk | > δ > 0
for some δ > 0. We will show that the agent’s total utility in the low state converges to at most
0 as T j →∞. According to lemma 3 an agent with uniform DNB would do strictly better: hence
the agent cannot be optimally biased.

We start by bounding the probability that subjective beliefs fall within the interval [ε′, 1 − ε′]
in the low state:

P (ε′ < µ̂bτT jc < 1− ε′|L)

= P

(
logit(ε′)− logit(µ∗L)

σ̂LτT
<

logit(µ̂bτT c)− logit(µ∗L)

σ̂LτT
<

logit(1− ε′)− logit(µ∗L)

σ̂LτT
|L

)

≤ Φ

(
logit(1− ε′)− logit(µ∗L)

σ̂LτT
+ 2ε

)
− Φ

(
logit(ε′)− logit(µ∗L)

σ̂LτT
− 2ε

)
+

ML

ε
√
τT

For the last inequality we fix any ε > 0 and use our approximation lemma 2. We next replicate the
proof of lemma 1 to show:

σ̂LτT j ≥
√
τT j

√
FL(k∗) (1− FL(k∗))λk∗δ︸ ︷︷ ︸

M ′>0

We can therefore simplify the upper bound:

P (ε′ < µ̂bτT jc < 1− ε′|L) ≤ 1√
2π

(
logit(1− ε′)− logit(ε′)√

τT jM ′
+ 4ε

)
+

ML

ε
√
τT j

= M ′′ε+
M ′′′(ε, ε′)√

τT j

Now fix a relative time τ∗. We can bound the total utility of the low type above by τ∗b(1)+(1−τ∗)K
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where

K =

(
M ′′ε+

M ′′′(ε, ε′)√
τT j

)
b(1)︸ ︷︷ ︸

Bound on expected
utility from posterior
falling within [ε′, 1 − ε′]
after relative time τ∗

+ b(ε′)︸︷︷︸
Bound on expected util-
ity from posteriors be-
low ε′ after relative time
τ∗

+ A

[
b(1)−

∫ 1−ε′

0
cdG(c)

]
︸ ︷︷ ︸

Bound on expected utility
from posteriors above 1−ε′ af-
ter relative time τ∗ (probabil-
ity A)

Due to the fact that the cost distribution is non-atomic, the last term is negative for sufficiently
small ε′ as L(1) < 0. Next, choose first τ∗ and ε′ and then T ∗ to make τ∗b(1) and the first two
terms of K as small as desired for all T j > T ∗. Therefore, the low type’s utility cannot be bounded
away from 0 and the biased Bayesian does not do strictly better than an unbiased Bayesian for
large T j .

Step 2: DNB The proof of claim 2 of the proposition proceeds in 2 sub-steps. (A) We first
show that for any constant M > 0 we have maxk β

T
k >

M
T for any sufficiently large T . (B) Next, if

optimal updating does not exhibit DNB for large T then the mean logit low-type belief converges
either to plus or minus infinity. In both cases, the biased agent’s utility will be strictly lower than
under the uniform DNB.

We start with part A. Assume this claim is wrong. Then, we can find some M and a sub-
sequence T j such that maxk β

T j

k < M
T j

. This implies that mean logit-belief in the high state at any
relative time τ is bounded above by M∗ = M maxk λk. But since belief utility is strictly increasing,
her utility will be strictly lower than the utility of the unrestricted agent, and therefore also strictly
lower than for the agent with uniform DNB for any large enough T . This is a contradiction since
we assumed that the responsiveness function is optimal.

Next consider claim B. Assume that
∑

k FL(k)β̂Tk λk does not converge to 0. Then there is some

ε > 0 and a sub-sequence T j such that |
∑

k FL(k)β̂T
j

k λk| > ε. For any constant M , this implies

|
∑

k FL(k)βT
j

k λk| > Mε
T j

as long as T j is sufficiently big. Hence, the mean logit-belief of the low
type converges either to −∞ or +∞.

We fix τ∗ < 1 and look at the case γ̂Lbτ∗T jc → −∞ first. Take a constant B < logit(µ∗L). We use

our approximation lemma 2 (for some ε > 0):

P (logit(µ̂bτ∗T jc) > B|L) = P

(
logit(µ̂bτ∗T jc)− γ̂Lbτ∗T jc

σ̂L
τ∗T j

>
B − γ̂Lbτ∗T jc

σ̂L
τ∗T j

|L

)

≤ 1− Φ

(
B − γ̂LbτT jc
σ̂L
τ∗T j

− 2ε

)
+

ML

ε
√
τ∗T j

≤ 1− Φ (−2ε) +
ML

ε
√
τ∗T j

≤ 2

3
for ε small enough and large enough T j

Hence, the probability of the low-type’s logit-belief being below B for relative times τ > τ∗ is at
least 1

3 . Hence, the low-type’s utility is strictly lower than for an agent with unrestricted beliefs.
This is a contradiction since we assumed that the responsiveness function is optimal. We can arrive
at a similar contradiction for the case γ̂Lbτ∗T jc →∞.

Step 3: Initial Beliefs
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We prove claims 3 and 4 of proposition 2 in 3 sub-steps. (A) We define an upper envelope
function U(x) for L(x). (B) We show that σ̂LτT → 0 as T → ∞, which is a strong form of
conservatism. (C) We show that this implies claims (3) and (4) of proposition 2.

We start with part A. Using Taylor’s theorem we can write

L(x) = L(µ∗L) +
1

2
L′′(y)(x− µ∗L)2 (16)

for some y ∈ [x, µ∗L]. Note that L′′ is continuous and hence strictly negative in an ε-neighborhood
of µ∗L, since L′′(µ∗L) < 0. We can assume that L′′(y) ≤ −A for some A > 0 in that neighborhood.
We can now define the upper envelope function U(x) for L(x) as follows:

U(x) =


L(µ∗L)− A

2 (µ∗L − ε)2 for x ≤ µ∗L − ε
L(µ∗L)− A

2 (x− µ∗L)2 for µ∗L − ε ≤ x ≤ µ∗L + ε

L(µ∗L)− A
2 (µ∗L + ε)2 for x ≥ µ∗L + ε

(17)

This upper envelope will lie above L(x) in the ε-neighborhood. We can refine the upper envelope
function such that the upper envelope function dominates L(x) on the interval [0, 1] by considering
the following set M that includes all local maxima outside the ε-neighborhood:

M =
{
x|L′(x) = 0

}
\ [µ∗L − ε, µ∗L + ε]

Denote the supremum of the L(M) with m∗. Due to the Bolzano-Weierstrass theorem, there is a
sequence (xj) ⊂ M such that L(xj) converges to m∗. Due to continuity, there is a subsequence
(xj
′
) of (xj) and a x̃ such that xj

′ → x̃ and L(xj
′
)→ m∗ and L(x̃) = m∗. If m∗ ≥ L(µ∗L) then we

get a contradiction because we assumed that the maximum at µ∗L is unique. Hence, m∗ < L(µ∗L).
Therefore, we can simply make the ε-neighborhood of the upper-envelope function small enough
such that it always lies above m∗. This will ensure that the upper envelope function dominates L
on the interval [0, 1].40

For part B, assume that σ̂LT does not converge to 0 as T → ∞. Then there is a subsequence

(T j) and some δ > 0 such that σ̂L
T j

> δ. Let δ′ < δ
√

2π
4 and τ∗ < 1. We use our approximation

lemma 2 (for some ε > 0 and any τ > τ∗):

P (|logit(µ̂bτT jc)− logit(µ∗L)| < δ′|L)

= P

(
logit(µ∗L)− δ′ − γ̂LbτT jc

σ̂LbτT jc
<

logit(γ̂LbτT jc)− γ̂
L
bτT jc

σ̂LbτT jc
<

logit(µ∗L) + δ′ − γ̂LbτT jc
σ̂LbτT jc

|L

)

≤ Φ

(
logit(µ∗L) + δ′ − γ̂LbτT jc

σ̂LbτT jc
+ 2ε

)
− Φ

(
logit(µ∗L)− δ′ − γ̂LbτT jc

σ̂LbτT jc
− 2ε

)
+

ML

ε
√
τT j

≤ 1√
2π

(
2δ′

σ̂L
T j

+ 4ε

)
+

ML

ε
√
τT j

≤ 1

2
+

4ε√
2π

+
ML

ε
√
τ∗T j

≤ 2

3
for ε small enough and large enough T j

40If there are finitely many local maxima, then the argument simplifies to m∗ being the second-highest maximum.
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Hence, the probability that subjective beliefs fall outside the interval [logit−1(logit(µ∗L−δ′)), logit−1(logit(µ∗L+
δ′))] for τ > τ∗ is at least 1/3. The utility of the low-type agent using the upper-envelope function
U(x) accumulated over time τ > τ∗ is always strictly worse than the utility of the agent with
a uniform DNB who can maintain beliefs arbitrarily closely to the optimal µ∗L. Since her actual
utility is even lower, we can strictly improve the agent’s utility by using a uniform DNB. This is
a contradiction since we assumed that the responsiveness function is optimal. Hence we proved
σ̂LT → 0.

It follows that µ̂T0 → µ∗L. Otherwise, there would be a δ-neighborhood of µ∗L and a subsequence

(T j) such that the initial prior µ̂T
j

0 falls outside that interval. Combined with part A, this would
imply that the agent’s utility is strictly lower than under the uniform DNB along this sequence for
large T j which is a contradiction.

Combining part A with claim (3) of the proposition we immediately get convergence of low-type
beliefs at any relative time τ to µ∗L. Part A of step 2 also establishes that high-type mean-logit
beliefs converge to +∞. It is easy to see that σ̂LT → 0 implies σ̂HT → 0. Using lemma 2 then
establishes that high-type beliefs converge to 1 in probability at any relative time τ > 0.

A.5 Proof of Proposition 3

We have established in step 3 of the proof of proposition 2 that σ̂LT → 0. Using lemma 2 we can
show that the probability that the low-type’s beliefs remain in an interval around the new optimal
low-type beliefs converges to 1 for any relative time τ . High-type belief convergence to 1 at all
relative times is not affected by choosing a different prior.
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Supplementary Material to: “Managing Self-Confidence: Theory
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October 18, 2021

S-1 Gender Differences

By connecting different information-processing biases, our model provides one candidate framework

for analysing heterogeneity in information-processing across individuals. Gender is a particularly

relevant dimension. Gender differences related to self-confidence have been demonstrated in nu-

merous studies in psychology, and economists have recently begun to investigate gender differences

in beliefs about relative ability.1 Consistent with prior work, men in our sample are significantly

more confident than women: the mean difference in confidence prior to taking the quiz was 6.7

percentage points (p < 0.001). Some of this may reflect differences in actual ability, as men scored

7.9 on average while women scored 6.9 (p < 0.001). Even when we look within groups of partici-

pants who took the same version of the quiz and received the same score, we find that men are 5.0

percentage points more confident on average (p < 0.001).

Of course, the point of our design is not to generate additional (albeit clean) evidence of gender

differences in confidence, but rather to examine what is at the root of this finding. Do women and

men simply differ in their prior, or do they process information differently, or have different de-

mands for information? To quantify gender differences in information processing, Table S-1 reports

estimates of Equation 5 differentiated by gender and estimated using both OLS and instrumen-

tal variables. Men are substantially less conservative than women, reacting significantly more to

both positive and negative feedback and 21% more to feedback on average (23% when estimated

by IV). Estimated changes in relative asymmetry are less stable; OLS and IV point estimates of
βH+βMale

H

βL+βMale
L

− βH
βL

are 0.05 and −0.10, respectively, and neither is significantly different from zero

(p = 0.64, 0.74). The evidence thus suggests that women are the more ego-defensive gender; they

do not merely have different priors, but seem to process information differently. Moreover since

1Numerous psychology studies purport to show that men are more (over-)confident than women; see the references
in Barber and Odean (2001), who use gender as a proxy measure of overconfidence in studying investment behavior.
Niederle and Vesterlund (2007) show that men are much more competitive than women and that part of this difference
is attributable to differences in self-confidence. They also speculate that gender differences in feedback aversion may
have further explanatory power.
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Table S-1: Heterogeneity in Updating by Gender

Regressor OLS

βH 0.346
(0.018)∗∗∗

βL 0.254
(0.013)∗∗∗

βMale
H 0.052

(0.027)∗

βMale
L 0.074

(0.024)∗∗∗

N 2448
R2 0.407

Each column is a separate regression. The outcome in all regressions is the log belief ratio. δ, βH , and βL are the

estimated effects of the prior belief and log likelihood ratio for positive and negative signals, respectively. δMale,

βMale
H , and βMale

L are the differential responses attributable to high ability. Robust standard errors clustered by

individual reported in parentheses. Statistical significance is denoted as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

ability is uncorrelated with asymmetry and conservatism (Table 3) these gender differences cannot

simply capture differences in ability.

Turning to demand for feedback, men and women place similar average valuations on informa-

tion; the means reported in Table S-2 are not statistically different from each other. Men, however,

are significantly less averse to feedback. They are 3.6 percentage points less likely to place negative

bids for coarse information, relative to a baseline of 11% for women (p = 0.09). They are also 4.6

percentage points less likely to place negative bids for precise information, relative to a baseline of

11% for women (p = 0.03). Figure S-1 provides a less parametric view, plotting mean information

values by gender and by quartile of the posterior belief distribution. The relationship between be-

liefs and valuations is inverse-U shaped for men, as a standard model of information demand would

predict. For women, however, valuations decline somewhat from the first to second quartile and

then increase dramatically from there to the fourth quartile. Confident women express significantly

stronger demand for information than confident men. Interestingly, valuations are particularly low

for women with beliefs between 26% and 50% (though not between 0% and 25%), similar to the

pattern in Figure S-2. Overall the information demand data, like the updating data, are consistent

with our theoretical framework if women are more likely than men to value belief utility.

S-2 Demand for Information

While some behavioral models do study agents who can skew their interpretation of feedback,

others focus on selective acquisition of feedback as a technique for self-confidence management. In

this section we test for this mechanism in our data and then relate it to our theoretical framework.
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Figure S-1: Information Values by Beliefs and by Gender
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Plots, for male and female participants separately and for quartiles of the posterior belief distribution, the mean

valuations for learning whether or not the participant scored in the top half of performers.

S-3.1 Evidence

A core distinction between standard models of learning and behavioral models with belief utility

(broadly defined) is that in the former agents always weakly value more information, while in

the latter they may be strictly averse to it. To examine this property in our data, we calculate

participants’ implied value for the various information packages offered to them. For example, a

participant’s valuation for learning whether or not she was in the top half is defined as her bid

for $2 and learning this information minus her bid for $2, all in cents. We take this difference to

remove potential bias due to misunderstanding the dominant strategy in the “bid for $2” decision

problem.2 Participants also bid on more precise information: learning their exact quantile. Table

S-2 summarizes the results. Participants’ mean value for coarse information is 16.5 (s.d. 47.8), with

9% of participants reporting a negative value. The mean valuation for precise information is higher

2Among our participants, 89% bid less than $2, and 80% bid less than $1.99.
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Table S-2: Implied Valuations for Information: Summary Statistics

N Mean Std. Dev. P (v < 0)

Estimation Sample
Learning top/bottom half 650 16.5 47.8 0.09
Learning percentile 650 40.0 78.3 0.09

Women
Learning top/bottom half 338 16.4 49.8 0.11
Learning percentile 338 38.7 82.0 0.11

Men
Learning top/bottom half 312 16.7 45.5 0.07
Learning percentile 312 41.5 74.1 0.06

Values for information are the differences between participants’ bids for $2 and their bids for the bundle of $2

and receiving an email containing that information. Values are in cents. The final column reports the fraction of

observations with strictly negative valuations. There are fewer than 656 observations because 6 participants did not

provide valuations for information.

at 40.0 (s.d. 78.3), but again 9% of participants report a negative value.3

Result 9 (Information Aversion). A substantial fraction of participants are willing to pay to avoid

learning their type.

One caveat is that negative valuations could be an artefact of noise in participants’ responses.

The strongest piece of evidence that this is not the case is our next result, which shows that

confidence has a causal effect on the propensity for aversion. Another clue is the high correlation

(ρ = 0.77) between having a negative valuation for coarse information and a negative valuation

for precise information, which suggests that both measures contain meaningful information. In

unreported results we have developed this idea formally and shown that under the structural

assumption of i.i.d. normal measurement error the bid data reject the null hypothesis of no aversion

(results available on request).

Result 10. More confident participants are causally less information-averse.

To examine whether information aversion is more pronounced among more or less confident

participants we regress an indicator I(vi ≥ 0) on participants’ logit posterior belief after all four

rounds of updating, which is when they bid for information. Columns I–III of Table S-3 show

that participants with higher posterior beliefs are indeed significantly more likely to have (weakly)

positive information values. The point estimate is slightly larger and remains strongly significant

when we control for ability (Column II) and gender and age (Column III). There could, however,

be some other unobserved factor orthogonal to these controls that explains the positive correlation.

To address this issue Columns IV and V report instrumental variables estimates. We use two

instruments. First, the average score of other participants randomly assigned to the same quiz

3Interestingly, Eliaz and Schotter (2010) find that participants are willing to pay positive amounts for information
(unrelated to ego) even when it cannot improve their decision-making.
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Table S-3: Confidence and Positive Information Value

OLS IV
Regressor I II III IV V

logit(µ) 0.017 0.023 0.023 0.027 0.027
(0.007)∗∗ (0.009)∗∗∗ (0.009)∗∗ (0.016)∗ (0.017)∗

Top Half -0.033 -0.035 -0.038 -0.042
(0.028) (0.028) (0.034) (0.034)

Male 0.029 0.027
(0.023) (0.023)

YOG 0.018 0.018
(0.012) (0.012)

First-Stage F -Statistic - - - 118.48 113.19
N 609 609 609 609 609
R2 0.007 0.010 0.016 - -

Notes: Each column is a separate regression. Estimation via OLS is reported in Columns I–III and by IV in Columns

IV–V using the instruments described in the text. The outcome variable in all regressions is an indicator equal to

1 if the participant’s valuation for information was positive; the mean of this variable is 0.91. “Top Half” is an

indicator equal to one if the participant scored above the median on his/her quiz type; “YOG” is the participant’s

year of graduation. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted as:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

type remains a valid instrument for beliefs, as in Section 4 above. In addition, once we control for

whether or not the participant scored in the top half the number of positive signals she received

during the updating stage is a valid instrument since signals were random conditional on ability.

Estimates using these instruments are similar to the OLS estimates, slightly larger, and though less

precise, still significant at the 10% level.

S-3.2 Theory

The result that low-confidence agents are (causally) likely to be information-averse is broadly

consistent with a number of behavioral models which generate information aversion. In this section

we examine more specifically how our data compare to the predictions of the model in Section 6

of the main paper. Towards this aim, extend the model and suppose that with probability ε > 0

the agent is presented with the opportunity to purchase a perfectly informative signal at time T̃

just before learning the cost c for making costly investment. It is easy to calculate the unbiased

Bayesian’s willingness to pay for information, WTPPB(µT̃ ):

WTPPB(µT̃ ) = µT̃

(
1−

∫ 1

0
cdG(c)

)
−
∫ µT̃

0
(µT̃ − c)dG(c) (18)

Importantly, an unbiased Bayesian’s value of information is always positive and single-peaked: the

value of information is zero when the agent is very sure about her type and largest when she is

the least sure. This valuation is generally suboptimal for an agent with belief utility, however, who
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wishes to balance this motive against the needs of decision-making. If a low type were to learn the

truth at time T̃ her carefully calibrated self-belief management would break down and she would

enjoy no belief utility between periods T̃ and T .

We therefore calculate the optimal willingness to pay WTPOB(µ̂τ , τ) at relative time τ which

the agent would commit to at time t = 0. To simplify our analysis and build on the results from

the previous section, we assume that the decision-maker does not take the possibility of buying

information into account when choosing her bias. This assumption seems appropriate when the

probability of purchasing information, ε, is small.

Proposition 4. Assume that an agent with positive belief utility chooses an optimal biased Bayesian

updating process. Let the subjective belief at relative time τ be 0 < µ̂τ < 1. The agent’s willingness

to pay evaluated at period 0, WTPOB(µ̂τ , τ), satisfies

lim
T→∞

WTPOB(µ̂τ , τ) = −L̃(µ̂τ ) (19)

where L̃(µ̂) = (1 − τ)b(µ̂) −
∫ µ̂

0 cdG(c) is the per-period utility of a low type with belief utility

(1− τ)b(µ̂).

Proof. We know that high-type beliefs converge to 1 while low type beliefs stay close to µ∗L. We

also know that σ̂LT → 0 and σ̂HT → 0 and that there are constants m1,m2 > 0 such that m1 <

σ̂LT /σ̂
H
T < m2. Hence, the probability at relative time τ that the agent is a low type provided that

µ̂bτT jc < 1 converges to 1. Therefore, learning one’s type decreases the agent’s total utility to 0

with probability approaching 1 as T → ∞ and destroys belief utility (1 − τ)b(µ̂τ ) (since low type

logit-beliefs follow a driftless random walk with vanishing variance).

Intuitively, an agent with subjective belief below 1 is asymptotically likely to be a low type, as

otherwise her beliefs would have converged rapidly to 1. Proposition 2 implies that her beliefs in

the low state follow a driftless random walk with vanishing variance and hence stay around µ̂τ . This

implies that her belief utility over the remaining relative time 1− τ is approximately (1− τ)b(µ̂τ ).

Buying information, on the other hand, would reveal her to be a low type immediately and yield a

payoff of 0.

The economic significance of this result is that for low subjective beliefs µ̂ (and τ not too large)

the optimal willingness to pay is negative, since the benefits of sustaining belief utility exceed the

costs of mistaken choices, while for high subjective beliefs the optimal WTP is positive, since this

relationship is reversed.4 Thus Proposition 4 implies that, consistent with our empirical findings,

the optimally biased agent will have a negative value of information when her belief is low and a

positive value of information when her belief is high. This effect is mitigated for larger τ when

belief utility is aggregated over fewer periods and hence becomes relatively less important; in this

case information demands begin to resemble traditional, unbiased demands.

4Note, that WTPOB(µ̂τ , τ) equals −L(µ̂τ ) for τ = 0. Therefore, the biased Bayesian’s willingness to pay for
information is negative for low beliefs because L(µ∗L) > 0.

6



Figure S-2: Numerical optimum information demand functions for finite T and binary signals

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
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0
.0

1
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0
.0

2
0

0
.0

3
0

Plots information values for realizable values of µ̂[τT ] for T = 31, and [τT ] = 10 for the unbiased Bayesian (solid

lines) and agent with optimal simple updating bias (dotted lines) cases. The remaining parameters are fixed in both

cases at µ0 = 0.5, c ∼ U [0, 1], b(µ̂) = 1
4
µ̂, p = 0.75, q = 0.25

Figure S-2 plots an example of the finite-T numerical demands generated by our model for both

an unbiased and an optimally biased Bayesian. The unbiased Bayesian always values information

positively, and values it most at intermediate beliefs where uncertainty is highest. The optimally

biased agent, on the other hand, places a negative value on information for low levels of confidence

and only assigns a positive value above a threshold level of confidence.
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S-3 Additional Tables

Table S-4: Quiz Performance: Summary Statistics

Correct Incorrect Score
N Mean SD Mean SD Mean SD

Overall
Restricted Sample 656 10.2 4.3 2.7 2.1 7.4 4.8
Full Sample 1058 9.7 4.3 3.0 2.4 6.8 4.9

By Quiz Type
1 79 8.1 3.1 1.7 1.2 6.4 3.3
2 85 13.0 2.9 2.7 2.1 10.3 3.4
3 69 8.9 3.3 3.0 2.1 5.9 3.8
4 74 12.2 3.8 3.1 2.3 9.2 4.6
5 75 6.5 1.6 4.0 2.3 2.5 2.8
6 63 14.5 4.5 2.3 1.7 12.3 4.7
7 73 7.6 2.6 2.2 1.7 5.4 3.1
8 69 13.6 2.8 3.2 1.8 10.4 3.3
9 69 7.3 3.5 2.7 2.8 4.7 4.5

By Gender
Male 314 10.6 4.2 2.7 2.3 7.9 4.8
Female 342 9.7 4.4 2.8 2.0 6.9 4.8

8



Table S-5: Priors are Sufficient Statistics for Lagged Information: Full Sample

Regressor Round 2 Round 3 Round 4

δ 1.070 0.938 0.906
(0.139)∗∗∗ (0.121)∗∗∗ (0.149)∗∗∗

βH 0.201 0.226 0.300
(0.026)∗∗∗ (0.030)∗∗∗ (0.041)∗∗∗

βL 0.133 0.205 0.251
(0.050)∗∗∗ (0.036)∗∗∗ (0.045)∗∗∗

β−1 -0.027 0.030 0.020
(0.042) (0.034) (0.039)

β−2 0.023 0.068
(0.039) (0.045)

β−3 0.058
(0.051)

N 999 999 999
R2 - - -

Each column is a regression. The outcome in all regressions is the log posterior odds ratio. Reported coefficients are on

the log prior odds ratio (δ), the log likelihood ratio for positive and negative signals (βH and βL), and the log likelihood

ratio of the signal received τ periods earlier (β−τ ). The estimation sample includes participants whose beliefs were

always within (0, 1) and who updated their beliefs at least once and never in the wrong direction. Estimation is via

IV using the average score of other participants who took the same (randomly assigned) quiz as an instrument for

the log prior odds ratio. Heteroskedasticity-robust standard errors in parenthesis. Statistical significance is denoted

as: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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